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Efficient Estimation of Average Treatment Effects
Using the Estimated Propensity Score

Hirano, Imbens and Ridder

Abstract

We are interested in estimating the average effect of a binary treatment on a scalar
outcome. If assignment to the treatment is unconfounded, that is, independent of the po-
tential outcomes given covariates, biases associated with simple treatment-control average
comparisons can be removed by adjusting for differences in the covariates. Rosenbaum and
Rubin (1983a) show that adjusting solely for differences between treated and control units
in a scalar function of the covariates, the propensity score, also removes all biases associ-
ated with differences in covariates. Although adjusting for the propensity score removes all
the bias, this can come at the expense of efficiency, as shown by Hahn (1998), Heckman,
Ichimura, Todd (1998), and Rotnitzky and Robins (1995). We show that weighting by the
inverse of a nonparametric estimate of the propensity score, rather than the true propen-
sity score, leads to efficient estimates of the average treatment effect. We provide intuition
for this result by showing that this estimator can be interpreted as an empirical likelihood
estimator that efficiently incorporates the information about the propensity score.



1. Introduction

Estimating the average effect of a binary treatment or policy on a scalar outcome is a

basic goal of many empirical studies in economics. If assignment to the treatment is uncon-

founded (i.e., independent of potential outcomes conditional on covariates or pre-treatment

variables, an assumption also known as selection on observables), the average treatment ef-

fect can be estimated by averaging within-subpopulation differences of treatment and control

averages. If there are many covariates, this strategy may not be desirable or even feasible.

An alternative approach is based on the propensity score, the conditional probability of

receiving treatment given covariates. Rosenbaum and Rubin (1983a, 1985) show that, un-

der the assumption of unconfoundedness, adjusting solely for differences in the propensity

score between treated and control units removes all bias associated with differences in the

covariates. Recent applications of propensity score methods in economics include Dehejia

and Wahba (1999), Heckman, Ichimura and Todd (1997), and Lechner (1999).

Although adjusting for differences in the propensity score removes all bias, it need not be

as efficient as adjusting for differences in all covariates, as shown by Hahn (1998), Heckman,

Ichimura and Todd (1998), and Robins, Mark and Newey (1992). However, Rosenbaum

(1987), Rubin and Thomas (1997), and Robins, Rotnitzky and Zhao (1995) show that using

parametric estimates of the propensity score, rather than the true propensity score, can avoid

some of these efficiency losses.

In this paper we propose estimators based on adjusting for nonparametric estimates of

the propensity score that are fully efficient for estimation of average treatment effects. Our

estimators weight observations by the inverse of nonparametric estimates of the propensity

score, rather than the true propensity score. Extending results from Newey (1994) to derive

the large sample properties of these semiparametric estimators, we show that they achieve

the semiparametric efficiency bound. We also show that in the case the propensity score is

known the proposed estimators can be interpreted as empirical likelihood estimators (e.g.,

Qin and Lawless, 1994; Imbens, Spady and Johnson, 1998) that efficiently incorporate the

information about the propensity score.
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If the propensity score is known, as, for example, in randomized experiments, these es-

timators can be used to improve efficiency over simply differencing treatment and control

averages. In that case an attractive choice for the non-parametric series estimator for the

propensity score uses the true propensity score as the leading term in the series. The estima-

tors can also be used in the case where the propensity score is unknown, as an alternative to

the previously proposed efficient estimators that require nonparametric estimation of func-

tions in addition to the propensity score.

In the next section we lay out the problem and discuss earlier work. In Section 3 we

provide some intuition for our efficiency results by examining a simplified version of the

problem. In Section 4 we give the formal conditions under which weighting by the estimated

propensity score results in an efficient estimator. Section 5 concludes.

2. The Basic Setup and Previous Results

2.1 The Model

We have a random sample of size N from a large population. For each unit i in the

sample, for i = 1, . . . , N , let Ti indicate whether the treatment of interest was received,

with Ti = 1 if unit i receives the active treatment, and Ti = 0 if unit i receives the control

treatment. Using the potential outcome notation popularized by Rubin (1974), let Yi(0)

denote the outcome for unit i under control and Yi(1) the outcome under treatment.
1 We

observe Ti and Yi, where Yi ≡ Ti · Yi(1) + (1− Ti) · Yi(0). In addition, we observe a vector of
covariates denoted by Xi.

2 Initially we focus on the population average treatment effect:

τ ≡ E[Y (1)− Y (0)]. (1)

We shall also discuss estimation of weighted average treatment effects

τwate ≡
R
E[Y (1)− Y (0)|X = x]g(x)dF (x)R

g(x)dF (x)
, (2)

1Implicit in this notation is the stability assumption or SUTVA (Rubin, 1978) that units are not affected
by receipt of treatment by others, and that there is only one version of the treatment.

2These variables are assumed not to be affected by the treatment.
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where g(·) is a known function of the covariates.3 In the special case where the weight

function g(x) is equal to the propensity score p(x) = P(T = 1|X = x), this leads under the

unconfoundedness assumption to the average effect for the treated:

τtreated ≡ E[Y (1)− Y (0)|T = 1]. (4)

The central problem of evaluation research is that for unit i we observe either Yi(0) or

Yi(1), but never both. To solve the identification problem, we maintain throughout the paper

the unconfoundedness assumption (Rubin, 1978; Rosenbaum and Rubin, 1983a), also known

as the selection—on—observables assumption (Barnow, Cain, and Goldberger, 1980), which

asserts that conditional on the observed covariates, the treatment indicator is independent

of the potential outcomes. Formally:

Assumption 1 (Unconfounded Treatment Assignment)

T ⊥ (Y (0), Y (1))

¯̄̄̄
X.

As Heckman, Ichimura and Todd (1998) point out, for identification of the average treat-

ment effect τ this assumption can be weakened to mean independence (E[Y (t)|T,X] =
E[Y (t)|X] for t = 0, 1). If one is interested in the average effect for the treated, the assump-
tion can be further weakened to only require that E[Y (0)|T,X] = E[Y (0)|X]. In this paper
we focus on the full independence assumption, to be consistent with much of the literature.

Under unconfoundedness we can estimate the average treatment effect conditional on

covariates, τ (x) ≡ E[Y (1)− Y (0)|X = x], because

τ(x) = E[Y (1)− Y (0)|X = x] = E[Y (1)|T = 1, X = x]− E[Y (0)|T = 0, X = x]
3An alternative estimand which we do not consider here is the direct weighted average treatment effect

of the form

τdwate =

R
E[Y (1)− Y (0)|X = x]g(x)dxR

g(x)dx
, (3)

where the weighting is only over the known function g(x). Note that in general F (x) is unknown so that
knowledge of g(x) does not imply knowledge of g(x)dF (x) and the other way around; estimation strategies
for the two estimands in (2) and (3) are in general different. Estimands of the latter type can be fit into the
framework of Robins and Ritov (1997).
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= E[Y |T = 1, X = x]− E[Y |T = 0, X = x].

In turn, the population average treatment effect can be obtained by averaging the τ(x) over

the distribution of X: τ = E[τ(X)]. In practice, the strategy of forming cells and comparing

units with exactly the same value of X may fail if X takes on too many distinct values.4 To

avoid the need to match units on the values of all covariates, Rosenbaum and Rubin (1983a,

1985) developed an approach based on the propensity score, the probability of selection into

the treatment group:

p(x) ≡ P(T = 1|X = x) = E[T |X = x], (5)

which is assumed to be bounded away from zero and one. Their key insight was that if

treatment and potential outcomes are independent conditional on all covariates, they are

also independent conditional on the conditional probability of receiving treatment given

covariates, that is, conditional on the propensity score. Formally, as shown by Rosenbaum

and Rubin (1983a), unconfoundedness implies

T ⊥ (Y (0), Y (1))

¯̄̄̄
p(X), (6)

implying that adjustment for the propensity score suffices for removing all biases associated

with differences in the covariates.

2.2 Previous Results

The model set out above, and related models, have been examined by many researchers.

In an important paper Hahn (1998), studying the same model as in the current paper,

calculates the semiparametric efficiency bounds, and proposes efficient estimators, for τ and

τtreated. Hahn’s estimator for τ , which is efficient irrespective of whether the propensity

score is known, nonparametrically estimates the two conditional expectations E[Y T |X = x]

and E[Y (1− T )|X = x] as well as the propensity score p(x), and then imputes the missing

4A separate issue is whether standard asymptotic theory provides adequate approximations to the sam-
pling distributions of estimators based on initial nonparametric estimates of conditional means, especially
when the dimension of the conditioning variable is high. For discussions of these issues, see Robins and Ritov
(1997) and Angrist and Hahn (1999) and references therein.
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potential outcomes as Ŷi(1) = Ê[Y T |Xi]/p̂(Xi) and Ŷi(0) = Ê[Y (1 − T )|Xi]/(1 − p̂(Xi)).
Hahn shows that the estimator for the population average treatment effect conditioning only

on the true propensity score rather than on the full set of covariates does not in general reach

the efficiency bound. In addition Hahn concludes that for estimating τtreated knowledge of

the propensity score is informative and derives efficient estimators both with and without

such knowledge. A difference between Hahn’s estimators and our proposed estimators is

that Hahn requires nonparametric estimation of the propensity score as well as the two

conditional means E[Y T |X = x] and E[Y (1 − T )|X = x], whereas our proposed estimator

only requires nonparametric estimation of the propensity score.

Heckman, Ichimura and Todd (1997, 1998) and Heckman, Ichimura, Smith and Todd

(1998) focus on the average treatment effect for the treated τtreated. They consider estimators

based on local linear regressions of the outcome on treatment status and either covariates

or the propensity score. They conclude that in general there is no clear ranking of their

estimators; under some conditions the estimator based on adjustment for all covariates is

superior to the estimator based on adjustment for the propensity score, and under other

conditions the second estimator is to be preferred. Lack of knowledge of the propensity

score does not alter this conclusion.

Rosenbaum (1987) and Rubin and Thomas (1997) investigate the differences between

using the estimated and the true propensity score when the propensity score belongs to a

parametric family. They conclude that there can be efficiency gains from using the estimated

propensity score. Our results show that by making the specification of the propensity score

sufficiently flexible, this approach leads to a fully efficient estimator.

Robins, Mark and Newey (1992), Robins and Rotnitzky (1995), Robins, Rotnitzky and

Zhao (1995), and Rotnitzky and Robins (1995) study the related problem of inference for

parameters in regression models where some data are Missing At Random (MAR, Rubin,

1976; Little and Rubin, 1987). Rotnitzky and Robins (1995) show, in parametric settings,

that weighting using the estimated rather than true selection probability can improve effi-

ciency, and suggest it may be possible to achieve efficiency by allowing the dimension of the
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model for the selection probability to grow with the sample size. For this missing data case

Robins and Rotnitzky (1995) also propose an efficient estimator which relies on an initial

consistent, but not necessarily efficient, estimator of the full population parameters. The

estimator proposed in this paper (and also the Hahn estimator) is efficient, but does not

require an initial consistent estimator.

3. A Simple Example with Binary Covariates

To develop some intuition for the formal results that will be presented in Section 4, we

consider the simpler problem of estimating the population average of a variable Y , β0 = E[Y ],

given a random sample of size N of the triple (Ti,Xi, Ti · Yi). In other words, Ti and Xi are
observed for all units in the sample, but Yi is only observed if Ti = 1. We provide a heuristic

argument for efficiency of estimated weights, deferring formal results to Section 4.

The analogue to the unconfoundedness assumption here is the assumption that the Yi

are Missing At Random (MAR, Rubin, 1976), or

T ⊥ Y

¯̄̄̄
X.

The role of the propensity score is played here by the selection probability: p(x) = E[T |X =

x] = P(T = 1|X). First, we restrict our attention in this section to the case with a single
binary covariate.5 Let Ntx denote the number of observations with Ti = t and Xi = x, for

t, x ∈ {0, 1}. Furthermore, suppose the true selection probability is constant, p(x) = 1/2 for
all x ∈ {0, 1}.6 The normalized variance bound for β0 is

Vbound = 2 · E [V(Y |X)] + V (E[Y |X]) , (7)

the variance of the maximum likelihood estimator.

5An efficient estimator is easily obtained by averaging the within-subsample difference of treat-
ment/control averages. It can also be found by specializing the more general estimators in Robins and
Rotnitzky (1995) and Hahn (1998) to this simple case. The discussion here is solely intended to convey
intuition for the formal results that will be presented in Section 4.

6Thus the missing data are Missing Completely At Random (MCAR, Rubin, 1976; Little and Rubin,
1987).
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The “true weights” estimator weights the complete observations by the inverse of the

true selection probability:

β̂tw =
1

N

NX
i=1

Yi · Ti
p(Xi)

=
1

N

NX
i=1

Yi · Ti
1/2

. (8)

Its large sample normalized variance is

Vtw = 2 · E[V(Y |X)] + V(E[Y |X]) + E
£
E[Y |X]2¤ = Vbound + E £E[Y |X]2¤ ,

strictly larger than the variance bound (7).

The second estimator weights the complete observations by the inverse of a nonparametric

estimate of the selection probability. This estimator is the main focus of the paper, and it

will be discussed in Section 4 in more general settings. In the current setting, the estimated

selection probability is simply the proportion of observed outcomes for a given value of the

covariate. For units with Xi = 0, the proportion of observed outcomes is N10/(N00 +N10),

and for units with Xi = 1, the proportion of observed outcomes is N11/(N01 + N11). Thus

the estimated selection probability is

p̂(x) =

½
N10/(N00 +N10) if x = 0,
N11/(N01 +N11) if x = 1.

Then the proposed “estimated weights” estimator is:

β̂ew =
1

N

NX
i=1

Yi · Ti
p̂(Xi)

. (9)

The normalized variance of this estimator is equal to the variance bound:

Vew = 2 · E[V(Y |X)] + V(E[Y |X]) = Vbound.

Thus, in this simple case, not only does the weighting estimator with nonparametrically

estimated weights have a lower variance than the estimator using the “true” weights, but

it is fully efficient in the sense of achieving the variance bound. In the remainder of this

section we shall provide some intuition for this result. This will suggest why this efficiency
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property may carry over to case with the continuous and vector-valued covariates, as well as

with general dependence of the selection probability or propensity score on the covariates.

An alternative interpretation of the estimated-weights estimator is based on a Generalized

Method of Moments (GMM) representation (Hansen, 1982). Under the assumption that the

selection probability is p(x) = 1/2, we can estimate β0 using the single moment restriction

E[ψ1(Y,X, T, β0)] = 0, with

ψ1(y, t, x, β) =
y · t
p(x)

− β =
y · t
1/2
− β.

The GMM estimator based on the single moment restriction ψ1(·), given knowledge of the
selection probability, is the true-weights estimator β̂tw in (8). However, this estimator is not

necessarily efficient, because it ignores the additional information that is available in the

form of knowledge of the selection probability. This additional information can be written

in moment condition form as E[T − p(X)|X] = E [T − 1/2|X] = 0. With a binary covari-
ate this conditional moment restriction corresponds to two marginal moment restrictions,

E[ψ2(Y, T,X, β0)] = 0, with:

ψ2(y, t, x, β) =

µ
x · (t− 1/2)

(1− x) · (t− 1/2)
¶
.

Estimating β0 in a generalized method of moments framework using the moments ψ1(·) and
ψ2(·) leads to a fully efficient estimator.7 Here it is of particular interest to consider the

empirical likelihood estimator (e.g., Qin and Lawless, 1994; Imbens, 1997; Kitamura and

Stutzer, 1997; Imbens, Spady and Johnson, 1998), which is based on maximization, both

over a nuisance parameter π = (π1, . . . ,πN) and over the parameter of interest β, of the

logarithm of the empirical likelihood function:

L(π) =
NX
i=1

ln πi, (10)

7Although ψ2(·) does not depend on the parameter of interest, ψ2(·) is generally correlated with ψ1(·).
Thus there can be efficiency gains from using both sets of moment conditions as in seemingly unrelated
regressions. See, e.g., Hellerstein and Imbens (1999) and Qian and Schmidt (1999).
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subject to the adding-up restriction
P

i πi = 1 and the moment conditions
P

i πiψ(yi, ti, xi, β) =

0. Solving for π̂i and β̂el by maximizing (10) subject to the restrictions, leads, after some

manipulation, to:

π̂i =

Ã
1 +

N11
N01+N11

− 1/2
1/4

· xi · (ti − 1/2) +
N10

N00+N10
− 1/2

1/4
· (1− xi) · (ti − 1/2)

!−1
,

which in turn implies

β̂el =
NX
i=1

2 · π̂i · Yi · Ti = β̂ew,

equal to the estimated weights estimator.

The above discussion generalizes directly to the case with general discrete covariates.

With continuous covariates knowledge of the propensity score implies a conditional moment

restriction corresponding to an infinite number of unconditional moment restrictions (e.g.,

Chamberlain, 1987). Using a series estimator for the propensity score captures the informa-

tion content of such a conditional moment restriction by a sequence of unconditional moment

restrictions.

The empirical likelihood interpretation suggests that moving from the true-weights esti-

mator to the estimated-weights estimator increases efficiency in the same way that adding

moment restrictions in a generalized method of moments framework improves efficiency. A

similar finding appears in Crepon, Kramarz, and Trognon (1998) who find that using a

reduced set of moment conditions, in which nuisance parameters are replaced by solutions

to the sample analogs of the remaining moment conditions, is asymptotically equivalent to

using the full set of moment conditions, whereas using the true values of the nuisance pa-

rameters may lead to efficiency losses. These results are also linked to the literature on

weighting in stratified sampling. Translated to our treatment effect setting, the results by

Lancaster (1990) suggest studying the distribution of the various estimators conditional on

the ancillary statistics
P
Ti,
P
Xi and

P
Ti ·Xi. Conditional on those three statistics the

true-weights estimator is biased, while the estimated-weights estimator remains unbiased.

Rosenbaum (1987) discusses this issue specifically in the context of estimated versus true
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propensity scores. In a general discussion of weighted M-estimators Wooldridge (1999, 2002)

shows that weighting by the inverse of estimated rather than population probabilities can

lead to efficiency gains.

4. Efficient Estimation Using Estimated Weights

In this section we present the main results of the paper. We discuss three distinct cases.

First, we consider the problem of estimating the population average treatment effect under

the unconfoundedness assumption. This includes as a special case the extension of the binary-

covariate MAR example of the previous section to continuous covariates. Second, we consider

estimation of weighted average treatment effects. Finally, we consider estimation of the effect

of the treatment on the treated, which in the known propensity score case will follow directly

from the solution to the general weighted average treatment effect case. This discussion will

shed additional light on Hahn’s (1998) interesting result that for this parameter knowledge

of the propensity score affects the efficiency bound, as well as on the findings in Heckman,

Ichimura and Todd (1998) that in the case of the average treatment effect for the treated

neither using the true nor using the estimated propensity score dominates the other.

4.1 Estimating Population Average Treatment Effects

In this section we use the set up from Section 2 with for each unit a pair of potential

outcomes (Y (0), Y (1)) and focus on efficient estimation of the population average treat-

ment effect, τ∗ = E[Y (1) − Y (0)].8 As before, p(x) = P(T = 1|X = x) is the propensity

score, the probability of receiving the active treatment. We maintain the unconfounded-

ness assumption. Define µw(x) ≡ E[Y (w)|X = x] and σ2w(x) = V(Y (w)|X = x) to be

the conditional mean and variance of Y (w) respectively. Under unconfoundedness we have

µw(x) = E[Y |W = w,X = x] and σ2w(x) = V(Y |W = w,X = x). We can characterize τ ∗

through the moment equation:

E [ψ(Y, T,X, τ∗, p∗(X))] = 0,
8Whenever necessary to avoid confusion we will use a superscript ∗ to denote true (population) values, so

that τ∗ denotes the population average treatment effect and p∗(x) the true (population) propensity score.
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where

ψ(y, t, x, τ, p(x)) =
y · t
p(x)

− y · (1− t)
1− p(x) − τ. (11)

Given an estimator p̂(x) for the propensity score, we estimate τ ∗ by setting the average

moment evaluated at the estimated selection probability equal to zero as a function of τ :

1
N

PN
i=1 ψ(Yi, Ti, Xi, τ̂ , p̂(Xi)) = 0, leading to the estimator

τ̂ =
1

N

NX
i=1

µ
Yi · Ti
p̂(Xi)

− Yi · (1− Ti)
1− p̂(Xi)

¶
. (12)

Because p∗(x) is a conditional expectation this semiparametric estimation problem directly

fits into the framework of Newey (1994), and his results using least squares estimators for

p∗(x) based on series apply (see the working paper version, Hirano, Imbens and Ridder,

2000). However, because p∗(x) is a probability such an approach has the unattractive feature

that it approximates a probability by a linear function. We therefore estimate p∗(x) in

a sieve approach (e.g., Geman and Hwang, 1982) by the Series Logit Estimator (SLE).

For K = 1, 2, . . . , let RK(x) = (r1K(x), r2K(x) . . . , rKK(x))
0 be a K−vector of functions.

Although the theory is derived for general sequences of approximating functions, the most

common class of functions are power series. Let λ = (λ1, . . . ,λr)
0 be an r-dimensional vector

of nonnegative integers (multi-indices), with norm |λ| =Pr
j=1 λj , let (λ(k))

∞
k=1 be a sequence

that includes all distinct multi-indices and satisfies |λ(k)| ≤ |λ(k+1)|, and let xλ =Qr
j=1 x

λj
j .

For a sequence λ(k) we consider the series rkK(x) = x
λ(k). If we denote the logistic cdf by

L(a) = exp(a)/(1 + exp(a)), the SLE for p∗(x) is defined by p̂(x) = L(RK(x)0π̂∗K) with

π̂K = argmax
π

NX
i=1

¡
Ti · lnL(RK(Xi)0π) + (1− Ti) · ln(1− L(RK(Xi)0π))

¢
.

In Appendix A we discuss the relevant asymptotic theory.

In addition to the unconfoundedness assumption the following assumptions are used to

derive the properties of the estimator. First, we restrict the distribution of X, Y (0) and

Y (1):
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Assumption 2 (Distribution of X)

(i), the support X of the r-dimensional covariate X is a Cartesian product of compact inter-

vals, X =
Qr
j=1[xlj , xuj ],

(ii), the density of X is bounded, and bounded away from 0, on X.

Assumption 3 (Distribution of Y (0), Y (1))

(i), E[Y (0)2] <∞ and E[Y (1)2] <∞,
(ii), µ0(x) and µ1(x) are continuously differentiable for all x ∈ X.
The next assumption requires sufficient smoothness of the propensity score.

Assumption 4 (Selection Probability)

The propensity score p∗(x) satisfies the following conditions: For all x ∈ X
(i), p∗(x) is continuously differentiable of order s ≥ 4 · r where r is the dimension of X ,

(ii), p∗(x) is bounded away from zero and one: 0 < p ≤ p∗(x) ≤ p < 1.
Finally, we restrict the rate at which additional terms are added to the series approxi-

mation to p∗(x), depending on the dimension of X and the number of derivatives of p∗(x).

Assumption 5 (Series Estimator)

The series logit estimator of p∗(x) uses a power series with K = Nν for some 1/(4(s/r−1)) <
ν < 1

9
.

The restriction on the derivatives (Assumption 4(i)) guarantees the existence of a ν that

satisfies the conditions in Assumption 5. Under these conditions we can state the first result.

Theorem 1 Suppose Assumptions 1-5 hold. Then:

(i), τ̂
p−→ τ∗,

(ii),
√
N(τ̂ − τ∗) d−→ N (0, V ), where

V = E

"µµ
Y T

p∗(X)
− Y (1− T )
1− p∗(X) − τ ∗

¶
−
µ
µ1(X)

p∗(x)
+

µ0(X)

1− p∗(X)
¶
(T − p∗(X))

¶2#

= E
·
(τ (X)− τ )2 +

σ21(X)

p∗(X)
+

σ20(X)

1− p∗(X)
¸
,
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and

(iii), τ̂ reaches the semiparametric efficiency bound.

Proof: see Appendix B.

Remark 1: This result also covers the extension of the binary-covariate MAR example in

Section 3 to the continuous covariate case. Just set Y = 0 if T = 0 and set Y (0) identically

equal to 0.

Remark 2: Theorem 1 establishes the result for continuousX. IfX has both continuous and

discrete components, this can be dealt with in a conceptually straighforward manner by using

the continuous covariate estimator within samples homogenous in the discrete covariates, at

the expense of additional notation.

Derivations presented in Appendix B show that the estimator in Theorem 1 can be

represented as asymptotically linear:

τ̂ = τ∗ +
1

N

NX
i=1

µ
ψ(Yi, Ti,Xi, τ

∗, p∗(Xi)) + α(Ti, Xi)

¶
+ op(1/

√
N),

where ψ(·) is defined in (11) and

α(t, x) = −
µ
µ1(x)

p∗(x)
+

µ0(x)

1− p∗(x)
¶
(t− p∗(x)). (13)

The known-weights estimator, (12) with p̂(x) replaced by p∗(x), is asymptotically linear

with score function ψ(·). The function α(t, x) represents the effect on the score function

of estimating p∗(x). Its first factor, −(µ1(x)/p∗(x) + µ0(x)/(1 − p∗(x))), is the conditional
expectation of the derivative of the moment condition ψ(y, t, x, τ∗, p∗(x)) with respect to

p∗(x). Hence, the score linearizes the estimator with respect to τ (trivial since the estimator

is already linear in τ) and p(·).
The asymptotically linear representation of τ̂ implies that its asymptotic variance equals

E
h³
ψ(Y, T,X, τ ∗, p∗(X)) + α(T,X)

´i2
, (14)

13



shown in the appendix to be equal to the variance expression in Theorem 1. We estimate

this variance by replacing the unknown quantities τ , p∗(·) and α(·) by estimates and replacing
the expectation by a sample average:

V̂ =
1

N

NX
i=1

(ψ(Yi, Ti, Xi, τ̂ , p̂(Xi)) + α̂(Ti,Xi))
2 . (15)

The estimation of α(t, x) requires some additional explanation. The second factor, t− p∗(x)
is estimated as t− p̂(x). The first factor, −(µ1(x)/p∗(x)+µ0(x)/(1−p∗(x))), can be written
as the conditional expectation of −(Y T/p∗(X)2 + Y (1 − T )/(1 − p∗(X))2) given X. We
therefore estimate the first factor in α(t, x) by nonparametric regression of −(Y T/p̂(X)2 +
Y (1−T )/(1− p̂(X))2) on X, using the same series approach as we used for estimating p∗(x).
Thus

−
Ã
1

N

NX
i=1

µ
YiTi
p̂(Xi)2

+
Yi(1− Ti)
(1− p̂(Xi))2

¶
RK(Xi)

!0Ã
1

N

NX
i=1

RK(Xi)R
K(Xi)

0
!−1

RK(x),

with RK(x) the same series of approximating functions as before, is used as an estimator for

−(µ1(x)/p∗(x) + µ0(x)/(1− p∗(x)), and the function α(t, x) is estimated by α̂(t, x):

α̂(t, x) = −
Ã
1

N

NX
i=1

µ
YiTi
p̂(Xi)2

+
Yi(1− Ti)
(1− p̂(Xi))2

¶
RK(Xi)

!0
(16)

Ã
1

N

NX
i=1

RK(Xi)R
K(Xi)

0
!−1

RK(x)(t− p̂(x)).

The following theorem describes the formal result.

Theorem 2 Suppose Assumptions 1-5 hold. Then V̂ is consistent for V .

Proof: see Appendix B.

In practive bootstrapping methods may be valuable alternatives to the above variance

estimator.
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4.2 Estimating the Weighted Average Treatment Effect

In this section we generalize the previous result to τwate, the weighted average treatment

effect for a known weight function g(x). One motivation for considering this estimand is that

by choosing g(x) appropriately, we can obtain treatment effects for subpopulations defined

by X. In addition, by choosing g(x) equal to the propensity score p∗(x), we can recover the

average effect of the treatment on the treated, as will be discussed below.

To estimate τwate, we use the following moment function:

ψ(y, t, x, τwate, p(x)) = g(x) ·
µ
y · t
p(x)

− y · (1− t)
1− p(x) − τwate

¶
, (17)

leading to the estimator

τ̂wate =
X
i

g(Xi)

·
Yi · Ti
p̂(Xi)

− Yi · (1− Ti)
1− p̂(Xi)

¸ÁX
i

g(Xi).

This estimator is asymptotically linear with the score function

τ̂wate =
1

E[g(X)]
1

N

NX
i=1

³
ψ(Yi, Ti, Xi, τwate, p

∗(x)) + α(Ti, Xi)
´
+ op(1/

√
N),

where now

α(t, x) = −g(x) ·
µ
µ1(x)

p∗(x)
+

µ0(x)

1− p∗(x)
¶
(t− p∗(x)).

The asymptotic variance can be estimated as

V̂ =
1

(
P

i g(Xi)/N)
2

1

N

NX
i=1

(ψ(Yi, Ti, Xi, τ̂wate, p̂(Xi)) + α̂(Ti, Xi))
2 ,

with an estimator for α(t, x) analogous to that for the average treatment effect:

α̂(t, x) = −g(x) 1
N

NX
i=1

µµ
YiTi

p̂K(Xi)2
+

Yi(1− Ti)
(1− p̂K(Xi))2

¶
RK(Xi)R

K(Xi)

¶0
Ã
1

N

NX
i=1

RK(Xi)R
K(Xi)

0
!−1

RK(x)(t− p̂K(x)).

Similar reasoning to the previous results gives the following results:

15



Theorem 3 Suppose Assumptions 1-5 hold, that g(x) is bounded from above and that E[g(X)] >

0. Then

(i), τ̂wate
p−→ τwate,

(ii),
√
N(τ̂wate − τwate)

d−→ N (0, V ), with

V =
1

E[g(X)]2
E
·
g(X)2 (τ (X)− τwate)

2 +
g(X)2

p∗(X)
σ21(X) +

g(X)2

1− p∗(X)σ
2
0(X)

¸
and (iii), V̂ is consistent for V .

The proof for this theorem follows the same line of argument as that for Theorems 1 and 2

and is omitted.

Remark: We could weaken Assumption 4(ii), the assumption that the propensity score is

bounded away from 0 and 1, by the assumption that g(x)/p∗(x) and g(x)/(1 − p∗(x)) are
bounded from above. Thus, if there is insufficient overlap in the distributions of the treated

and untreated units, one may wish to choose g(·) to restrict attention to a subpopulation for
which there is sufficiently large probability of observing both treated and untreated units.

A semiparametric efficiency bound for τwate has not been previously calculated in the

literature. The next result shows that our estimator is efficient.

Theorem 4 The semiparametric efficiency bound for estimation of τwate is

V =
1

E[g(X)]2
E
·
g(X)2 (τ (X)− τwate)

2 +
g(X)2

p∗(X)
σ21(X) +

g(X)2

1− p∗(X)σ
2
0(X)

¸
.

Proof: See Appendix B.

4.3 Estimating the Average Treatment Effect for the Treated

Under unconfoundedness the average treatment effect for the treated (Rubin, 1977; Heck-

man and Robb, 1985, Heckman, Ichimura and Todd, 1997, 1998) is a special case of the

weighted average treatment effect, corresponding to the weighting function g(x) = p∗(x). To

see this first note that under unconfoundedness

τtreated = E[Y (1)− Y (0)|T = 1] = E
h
E[Y (1)− Y (0)|X,T = 1]

¯̄̄
T = 1

i
16



= E
h
E[Y (1)− Y (0)|X]

¯̄̄
T = 1

i
E[τ (X)|T = 1].

Second, the latter is equal to

E[τ (X)|T = 1] =
Z
τ (x)dF (x|T = 1) =

Z
τ(x)p∗(x)dF (x)

.Z
p∗(x)dF (x),

which is τwate with g(x) equal to p
∗(x). Hence we can use the moment equation (17) with

p∗(x) substituted for g(x):

ψ(y, t, x, τtreated, p(x)) = p
∗(x) ·

µ
y · t
p(x)

− y · (1− t)
1− p(x) − τtreated

¶
. (18)

The estimator is the solution to

0 =
NX
i=1

p∗(Xi) ·
µ
Yi · Ti
p̂(Xi)

− Yi · (1− Ti)
1− p̂(Xi) − τtreated

¶
, (19)

with the same nonparametric series estimator p̂(x) as before.

The next result, which follows directly from Theorem 4, shows that this estimator achieves

the efficiency bound calculated by Hahn (1998) for estimation of the effect of treatment on

the treated, assuming that the propensity score is known.

Corollary 1 Suppose that Assumptions 1-5 hold. Then

(i), τ̂treated
p−→ τtreated,

(ii),
√
N(τ̂treated − τtreated)

d−→ N (0, V ), with

V =
1

E[p∗(X)]2
E
·
p∗(X)2 (τ (X)− τtreated)

2 + p∗(X)σ21(X) +
p∗(X)2

1− p∗(X)σ
2
0(X)

¸
,

and (iii), τ̂treated achieves the semiparametric efficiency bound.

The proof for this corollary is omitted as the result directly follows from Theorem 4.

Note that in the moment function (18) the propensity score appears in two places, first as

p∗(x) multiplying the remainder of the moment function where it replaced the general weight

function g(x) in (17), and second as p(x) in the denominator of the two terms. We only

use the estimated propensity score in the second part in the efficient estimator in (19). The
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result of the theorem above implies that this is more efficient than using the true propensity

score everywhere and solving

0 =
NX
i=1

p∗(Xi) ·
µ
Yi · Ti
p∗(Xi)

− Yi · (1− Ti)
1− p∗(Xi) − τtreated

¶
, (20)

or using the estimated propensity score everywhere, which amounts to solving

0 =
NX
i=1

p̂(Xi) ·
µ
Yi · Ti
p̂(Xi)

− Yi · (1− Ti)
1− p̂(Xi) − τtreated

¶
. (21)

A direct implication of this result is that the simple sample average of the outcomes for the

treated
P

i YiTi/
P

i Ti is less efficient for the population average E[Y (1)|T = 1] than the

weighted average
P

i YiTi(p
∗(Xi)/p̂(Xi))/

P
i p
∗(Xi) where the weights are the ratio of the

true and estimated propensity score. Another implication is that the estimators characterized

by (20) and (21) cannot in general be ranked in terms of efficiency as there are effects of

opposite signs (e.g., Heckman, Ichimura and Todd, 1997).

If the propensity score is not known, then Hahn (1998) shows that this affects the ef-

ficiency bound for the effect of treatment on the treated. Our previous estimator τ̂treated

cannot be used since it makes use of p∗(x). However, we can use the estimated propensity

score in place of p∗(x) in the weighting of observations as in (21). Call this estimator τ̂te.

The next theorem shows that this estimator is efficient if the propensity is not known.

Theorem 5 Suppose that Assumptions 1-5 hold. Then

(i), τ̂te
p−→ τtreated,

(ii),
√
N(τ̂te − τtreated)

d−→ N (0, V ), with

V =
1

E[p∗(X)]2
E
·
p∗(X) (τ(X)− τtreated)

2 + p∗(X)σ21(X) +
p∗(X)2

1− p∗(X)σ
2
0(X)

¸
,

and (iii), τ̂te achieves the semiparametric efficiency bound for estimation of τtreated when the

propensity score is not known.

The proof goes along the same lines as that for Theorems 1 and 2 and is omitted.
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5. Conclusion

In this paper we have studied efficient estimation of various average treatment effects

under an unconfounded treatment assignment assumption. Although weighting observations

by the inverse of the true propensity score does not lead to efficient estimators, weighting

each observation by the inverse of a nonparametric estimate of the propensity score does lead

to efficient estimators. We provide intuition for this result through connections to empirical

likelihood estimators, and estimators from the literature on variable probability sampling.

The estimators proposed in this paper require fewer functions to be estimated nonpara-

metrically than other efficient estimators previously proposed in the literature. Which esti-

mators have more attractive finite sample properties, and which have more attractive compu-

tational properties, remain open questions. The results underline the important role played

by the propensity score in estimation of average causal effects.

Appendix A: Logistic Series Estimator

In this appendix we derive the relevant properties of the logistic series estimator, which

can be interpreted as a sieve estimator (e.g., Geman and Hwang, 1982). Let rK(x) =

(r1K(x), . . . , rKK(x))
0 be aK-vector of functions. The triangular array of functions rK(x), K =

1, 2, . . . is the basis for the approximation of the propensity score. In particular, we approx-

imate a function f : Rr → R by γ 0Kr
K(x). Because γ0Kr

K(x) = γ0KA
−1
K AKr

K(x) we can

also use RK(x) = AKr
K(x) as the basis of approximation. By choosing AK appropriately

we obtain a system of orthogonal (with respect to some weight function) polynomials. The

properties of the series logit estimator and the proof of Theorem 1 are mostly for a general

system of approximating functions. We indicate where the properties of the approximating

class of functions are used.

In particular, we consider approximation by power series. One possible choice for a
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triangular sequence of powers of x is

r1(x) = 1, r2(x) =

·
1
x1

¸
, rr+1(x) =


1
x1
.
.
.
xr

 , r
r+1(x) =



1
x1
.
.
.
xr
x21


(22)

Linear combinations of the elements of the vectors rK(x) are the approximating power series.

A power series in which x1, . . . , xr are included up to power n has (n+ 1)
r terms. Hence, if

we use the sequence in (22) and set K = (n+ 1)r, then rK(x)0γK has powers in all variables

up to n. If the function f is s times continuously differentiable and K = (n+ 1)r, then by

Theorem 8, p. 90, in Lorentz (1986) there is a K-vector γK such that for R
K(x) = AKr

K(x),

sup
x∈X

¯̄
f(x)−RK(x)0γK

¯̄
< Cn−s = CK− s

r (23)

Here, and in the sequel, C denotes a generic positive constant9, and X is the support of X.

If we multiply the constant C in (23) by 2
r
s , then this inequality holds for all K.

The series logit estimator of the population propensity score p∗(x) is p̂K(x) = L(RK(x)0π̂K)

with L(z) = exp(z)/(1 + exp(z)) the logistic cdf, and

π̂K = argmax
π

NX
i=1

¡
Ti lnL(R

K(Xi)
0π) + (1− Ti) ln(1− L(RK(Xi)0π))

¢
. (24)

For N →∞ and K fixed we have π̂K
p→ π∗K, with π

∗
K the pseudo true value:

π∗K = argmax
π
EX

£
p0(X) lnL(R

K(X)0π) + (1− p0(X)) ln(1− L(RK(X)0π))
¤
. (25)

We define the pseudo true propensity score: p∗K(x) = L(R
K(x)0π∗K).

In the proofs for the theorems we need some properties of this logit estimator. For those

properties it is convenient to distinguish between the deterministic difference between the

true propensity score and the psuedo true propensity score and the stochastic difference

9If two constants are needed, we will use the generic notation C1, C2.
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between the estimated propensity score and the pseudo true value. In the remainder of this

appendix we therefore derive (i) a uniform bound on the difference between p∗(x) and p∗K(x)

and (ii) a bound on the sampling variance in the form of the stochastic order of kπ̂K −π∗Kk.
The support of X is assumed to be a compact subset of Rr. Moreover, we assume that

p∗(x) is s times continuously differentiable on X, and that p∗(x) is bounded from away 0 and

1 on X. To ensure that the approximation of p∗ is between 0 and 1 we do not approximate p∗,

but rather the log odds ratio which is also s times continuously differentiable and bounded

on X. Hence by (23) there is a πK such that

sup
x∈X

¯̄̄̄
ln

µ
p∗(x)

1− p∗(x)
¶
−RK(x)0πK

¯̄̄̄
< CK− s

r (26)

From (26), for all x ∈ X

L(RK(x)0πK − CK− s
r )− L(RK(x)0πK) < p∗(x)− L(RK(x)0πK) < (27)

< L(RK(x)0πK + CK− s
r )− L(RK(x)0πK)

By the mean value theorem applied to the lower and upper bound and by L0(RK(x)π̃) =

L(RK(x)0π̃)(1 − L(rK(x)0π̃)) being bounded at intermediate values π̃,10 we find that the
lower and upper bound are bounded by −1

4
CK− s

r and 1
4
CK− s

r , respectively. Hence, there is

a πK such that

sup
x∈X

¯̄
p∗(x)− L(RK(x)0πK)

¯̄
< CK− s

r (28)

We now obtain a uniform bound on the error in the approximation of p∗ by pK . We will

use the matrix norm ||A|| = ptr(A0A). Note that this is the usual Euclidean norm if A is

a column vector11. If A is a scalar, we denote the norm by |A|. By (25) π∗K is a solution to
10Below we show that we can make this assumption without loss of generality, if we impose a restriction

on the sequences K(N).
11It is useful to list some properties of this norm. Let A and B be K × K matrices and c be a K

vector. Then kABk2 = Pi

P
j (
P

k aikbkj)
2
. Applying the vector Cauchy-Schwartz inequality to the inner

sum we find kABk ≤ kAkkBk. By the maximum inequality for quadratic forms kAck ≤ pλmax(A0A)kck
which gives a sharp upper bound (the upper bound kAkkck is not sharp in general). We also frequently use
the Cauchy-Schwartz inequality for expectations that implies that for nonnegative random variables X,Y ,
E(XY ) ≤pE(X2)E(Y 2).
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the first order condition

EX
£
(p∗(X)− L(RK(X)0π∗K))RK(X)

¤
= 0

Hence the average approximation error is orthogonal to all components of RK. If, as we

assume, RK(x) has a constant component for all K, we have

EX
£
(p∗(X)− L(RK(X)0π∗K))

¤
= 0 (29)

However, we need a uniform bound on the absolute approximation error. By the mean value

theorem there is a π̃K such that
12

L(RK(x)0πK) = L(RK(x)0π∗K) + L
0(RK(x)0π̃K)RK(x)0(πK − π∗K) (30)

By adding and subtracting L(RK(X)0πK) in (29) we obtain¯̄
EX

£
L(RK(X)0πK)− L(RK(X)0π∗K)

¤¯̄ ≤ (31)

≤ EX
£¯̄
p∗(X)− L(RK(X)0πK)

¯̄¤ ≤ CK− s
r

Substitution of (30) in the left-hand side of this inequality gives, because L0(RK(x)0π̃K) is

bounded from 0 on X and kEX(RK(X))k > 0 if RK(x) has a constant component¯̄
EX

£
L(RK(X)0πK)− L(RK(X)0π∗K)

¤¯̄
(32)

=
¯̄
EX

£
L0(RK(X)0π̃K)RK(X)0(πK − π∗K)

¤¯̄ ≥ CkπK − π∗Kk

Combining (31) and (32) we obtain

kπK − π∗Kk ≤ CK− s
r (33)

Hence by (30) and the Cauchy-Schwartz inequality

sup
x∈X

¯̄
p∗(x)− L(RK(x)0π∗K)

¯̄ ≤ (34)

12π̃K is a generic notation for an intermediate value in an application of the mean value theorem.
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sup
x∈X

¯̄
p∗(x)− L(RK(x)0πK)

¯̄
+ sup

x∈X

¯̄
L(RK(x)0π∗K)− L(RK(x)0πK)

¯̄ ≤
≤ C1K− s

r + C2 sup
x∈X

kRK(x)kkπK − π∗Kk ≤ C sup
x∈X

kRK(x)kK− s
r

For orthogonal polynomials Newey (1994ab, 1997) gives the bound

sup
x∈X

kRK(x)k = O(K) (35)

In general, the bound depends on the array of approximating functions that is used. In the

sequel we use the notation

ζ(K) = sup
x∈X

kRK(x)k (36)

Combining (34) and (36), we have

sup
x∈X

¯̄
p∗(x)− L(RK(x)0π∗K)

¯̄
= O(K−s/rζ(K)),

as a uniform rate on the difference between the propensity score and the pseudo true propen-

sity score.13

For the second part of this appendix we derive the stochastic order of kπ̂K − π∗Kk
if K increases without bounds with N . Let K(N) be a sequence of values of K with

limN→∞K(N) = ∞. We obtain a bound on the variance of kπ̂K(N) − πK(N)k if N is large.

π̂K(N) satisfies the first order conditions

NX
i=1

RK(N)(Xi)(Ti − L(RK(N)(Xi)0π̂K(N))) = 0 (37)

By the mean value theorem we obtain

Σ̃K(N)(π̂K(N) − πK(N)) = VK(N) (38)

13Note that although by (26) there is a πK such that

sup
x∈X

¯̄
p∗(x)− L(RK(x)0πK)

¯̄
= O(K−s/r),

the order for the approximation at the pseudo true value π∗K is not as good at O(K−s/rζ(K)).
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with

Σ̃K =
1

N

NX
i=1

RK(Xi)R
K(Xi)

0L0(RK(Xi)0π̃K) (39)

VK =
1

N

NX
i=1

RK(Xi)(Ti − L(RK(Xi)0π∗K)) (40)

If the smallest eigenvalue of the matrix SK = EX
£
RK(X)RK(X)0

¤
is bounded from 0 for all

K14, the same is true for the smallest eigenvalue of

ΣK = EX
£
RK(X)RK(X)0L0(RK(X)0π∗K)

¤
(41)

for all K. Moreover, if L0(RK(x)0π̃K) is bounded from 0 on X, then the smallest eigenvalue

of Σ̃K(N) is bounded from below by a positive constant(independent of K(N)) times the

smallest eigenvalue of

ŜK(N) =
1

N

NX
i=1

RK(N)(Xi)R
K(N)(Xi)

0 (42)

and this eigenvalue is bounded from 0 with probability 1, if kŜK(N) − SKk p→ 0 (Newey

(1995), Lemma A.4) which is the case if ζ(K(N))4

N
→ 0 (Newey (1995), Lemma A.10) with

ζ(K) defined in (36). This condition on K(N), which we refer to as the large sample

identification condition, ensures that the logit model is identified if N → ∞, even if the
number of terms in the series increases without bounds.

Under the assumptions mentioned in the previous paragraph

π̂K(N) − πK(N) = Σ̃−1K(N)VK(N) + oP (1) (43)

By the properties of the trace norm

E
·°°°Σ̃−1K(N)√NVK(N)°°°2¸ ≤ E

 1

λmin

³
Σ̃K(N)

´ °°°√NVK(N)°°°2
 (44)

14If RK(x) are orthogonal polynomials, a sufficient condition for this is that the density of X is bounded
from 0 on X.
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Because λmin

³
Σ̃K(N)

´
is bounded from 0 with probability 1 if N →∞, the right hand side

is bounded by (if N is large)

CE
h
k
√
NVK(N)k2

i
= Ctr(ΣK(N)) ≤ Cζ(K(N)). (45)

Thus

E(kΣ̃−1K(N)VK(N)k2) ≤ C
ζ(K(N))

N

and we conclude that

kπ̂K(N) − πK(N)k = O
Ãr

ζ(K(N))

N

!
+ o(1). (46)

The derivations above assume in a number of places that L0(RK(N)(x)0π̃K(N)) is bounded

from 0 on X with probability 1 and for some range of sequences K(N). We shall show

that we can make this assumption without loss of generality, if the sequence K(N) sat-

isfies the large sample identification condition ζ(K(N))4/N → 0 without assuming that

supπ,x∈X πL
0(RK(x)0π) is bounded away from zero. In particular, let

ηK = inf
x∈X

L(RK(x)0π∗K)(1− L(RK(x)0π∗K)) (47)

Because p∗ is bounded from 0, ηK is strictly positive if K is greater than or equal to say K0

if p∗ is sufficiently often differentiable (see (34)). We can remedy this by substituting

max
©
ηK0/2, L(R

K(N)(x)0π̃K(N))(1− L(RK(N)(x)0π̃K(N)))
ª
, (48)

for L0(RK(N)(x)0π̃K(N)), which is bounded away from zero. Now consider (use the Cauchy-

Schwartz inequality)

sup
x∈X

|RK(N)(x)0(π̂K(N) − πK(N))| ≤ sup
x∈X

kRK(N)(x)k · kπ̂K(N) − πK(N))k = (49)

= ζ(K(N))OP

Ãp
ζ(K(N))√
N

!
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Hence if the large sample identification condition on K(N) holds, then the left hand side

converges to 0 in probability. Now by the mean value theorem

sup
x∈X

|L(RK(N)(x)0π̂K(N))− L(RK(N)(x)0πK(N))| ≤ (50)

≤ 1
4
sup
x∈X

|RK(N)(x)0(π̂K(N) − πK(N))| = oP (1)

and we conclude

lim
N→∞

Pr

µ
inf
x∈X

L(RK(N)(x)0π̂K(N)

¶
> ε) = 1 (51)

An analogous result shows that for these sequences K(N) the estimated propensity score is

bounded from 1 with probability 1 and we conclude that L(RK(N)(x)0π̃K(N))(1−L(RK(N)(x)0π̃K(N)))
is bounded from 0 with probability 1, as required. To be precise, the error that we make is

oP (1) uniformly over sequences K(N) that satisfy the large sample identification condition.

Hence, the lower bound in the definition (48) is not needed. The result that the estimated

propensity score is bounded from 0 on X with probability 1 and for sequences K(N) that

satisfy the large sample identification condition is used below.

In the sequel we use the properties (34) and (46) of the series logit estimator of the propen-

sity score. In (46) we can write K for K(N) with the understanding that this stochastic

order holds for all sequences K(N) with ζ(K(N))4/N → 0, so that that the right-hand side

of (46) is effectively oP (1).

Appendix B: Proofs of Theorems

Proof of Theorem 1:

To ease the notational burden we present the proof for the special case with Y (0) = 0

with probability one. This can be interpreted as the special case where one is interested in

estimating the average outcome β = E[Y (1)], where Y (1) is missing at random conditional on

the covariatesX. Thus it is the direct extension of the binary-covariate example in Section 3.

Since the average treatment effect case simply amounts to estimating two averages where in

both cases the variables are missing at random, the argument for the general case is exactly
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analogous, only involving substantially longer equations. In the proof we therefore follow the

missing at random set up with interest in β = E[Y (1)], the missing at random assumption

Y (1) ⊥ T |X, and a random sample of (Ti, Xi, Yi)
N
i=1, where Yi = Yi(1) · Ti.

The estimated weight estimator β̂ew is

β̂ew =
1

N

NX
i=1

Ti · Yi
p̂K(Xi)

(52)

with p̂K(Xi) = L(R
K(Xi)

0π̂K). The key part of the proof is to show that¯̄̄̄
¯√N(β̂ew − β0)− 1√

N

NX
i=1

½µ
Ti · Yi
p∗(Xi)

− β0

¶
− µ1(Xi)
p∗(Xi)

(Ti − p∗(Xi))
¾¯̄̄̄
¯ = oP (1) (53)

This implies that β̂ew is asymptotically linear, i.e. behaves asymptotically as a sample

average, with score function ψ(Y, T,X, β0, p
∗(·)) + α(T,X), where

ψ(y, t, x, β, p(·)) = t · y
p(x)

− β, and α(t, x) = −µ1(x)
p∗(x)

· (t− p∗(x))

The first term of the score function, ψ(·), is equal to the score that would obtain if we
substitute the population probability p∗ for the estimator p̂K in (52). The second term,

α(·), gives the contribution of estimating p∗ to the asymptotic distribution of β̂ew. This
contribution is linear in T − p∗(X). Hence, the score linearizes the estimator with respect
to β (trivial since the estimator is already linear in β) and p(·). The asymptotic variance of
β̂ew is equal to the variance of ψ(Y, T, x,β0, p

∗(X)) +α(T,X) (note that its mean is 0). The

three components of this variance are

E[ψ(Y, T,X, β0, p∗(·))2] = E
·
µ1(X)

2

p∗(X)

¸
+ E

·
σ21(X)

p∗(X)

¸
− β20 ,

E[α(T,X)2] = E
·
µ1(X)

2

p∗(X)

¸
− E[µ1(X)2],

E[ψ(Y, T,X, β0, p∗(·)) · α(T,X)] = −E
·
µ1(X)

2

p∗(X)

¸
+ E[µ1(X)2],
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so that

E[ψ(Y, T,X, β0, p∗(·)) + α(T,X)2] = E[µ1(X)2]− β20 + E
·
σ21(X)

p∗(X)

¸

= V(E[Y (1)|X]) + E[V(Y (1)|X)/p∗(X)],

which is the variance in Theorem 1, specialized to the case with µ0(x) = σ20(x) = 0.

In the proof of (53) we rewrite the difference by adding and subtracting a number of

terms, so that we can bound the differences. We give the asymptotic order of all differences,

which makes it easier to understand the role of the assumptions. We have

√
N(β̂ew − β0) =

1√
N

NX
i=1

µ
TiYi
p̂K(Xi)

− TiYi
p∗(Xi)

+
TiYi
p∗(Xi)2

(p̂K(Xi)− p∗(Xi))
¶

(54)

+
1√
N

NX
i=1

µ
− TiYi
p∗(Xi)2

(p̂K(Xi)− p∗(Xi)) +
Z
X

µ1(x)

p∗(x)
(p̂K(x)− p∗(x))dF0(x)

¶
(55)

−
√
N

Z
X

µ1(x)

p∗(x)
(p̂K(x)− p∗(x))dF0(x)− 1√

N

NX
i=1

δ̃K(Xi)
Ti − pK(Xi)p

pK(Xi)(1− pK(Xi))
(56)

+
1√
N

NX
i=1

(δ̃K(Xi)− δK(Xi))
Ti − pK(Xi)p

pK(Xi)(1− pK(Xi))
(57)

+
1√
N

NX
i=1

Ã
δK(Xi)

Ti − pK(Xi)p
pK(Xi)(1− pK(Xi))

− δ0(Xi)
Ti − p∗(Xi)p

p∗(Xi)(1− p∗(Xi))

!
(58)

+
1√
N

NX
i=1

(µ
Ti · Yi
p∗(Xi)

− β0

¶
+ δ0(Xi)

Ti − p∗(Xi)p
p∗(Xi)(1− p∗(Xi))

)
(59)

In this expression F0 is the population cdf of X and

δ̃K(x) = −
Z
X

µ1(z)

p∗(z)
L0(RK(z)0π̃K)RK(z)0dF0(z)Σ̃−1K

q
L0(RK(x)0π∗K)R

K(x) (60)
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δK(x) = −
Z
X

µ1(z)

p∗(z)
L0(RK(z)0π∗K)R

K(z)0dF0(z)Σ−1K

q
L0(RK(x)0π∗K)R

K(x) (61)

δ0(x) = −µ1(x)
p∗(x)

p
p∗(Xi)(1− p∗(Xi)) (62)

Note that (59) is equal to the linearized expression for
√
N(β̂ew − β0). To show that the

estimator is indeed asymptotically linear, we must derive bounds on the terms (54)-(58). If

a bound depends on both K and N , we derive the bound for sequences K(N) that go to ∞
with N . Because during the derivation some restrictions on these sequences are imposed, the

resulting bounds are not uniform in K. We have seen this type of argument in the derivation

of the order of kπ̂K(N) − πK(N)k where we imposed the large sample identification condition
ζ(K(N))4/N → 0.

Below we present the bounds on the terms (54)-(58). Details for the derivations for these

bounds are available from the authors. The bound for (54) is¯̄̄̄
¯ 1√N

NX
i=1

µ
TiYi
p̂K(Xi)

− TiYi
p∗(Xi)

+
TiYi
p∗(Xi)2

(p̂K(Xi)− p∗(Xi))
¶¯̄̄̄
¯

= OP

µ
ζ(K(N))3√

N

¶
+OP

³√
Nζ(K(N))2K(N)−2

s
r

´
+OP

¡
ζ(K(N))5/2K(N)−

s
r

¢
The bound for (55) is

1√
N

NX
i=1

µ
− TiYi
p∗(Xi)2

(p̂K(Xi)− p∗(Xi)) +
Z
X

µ1(x)

p∗(x)
(p̂K(x)− p∗(x))dF0(x)

¶

= OP (ζ(K(N))K(N)
− s
r ) +OP

µ
ζ(K(N))2√

N

¶
The bound for (56) is¯̄̄̄√

N

Z
X

µ1(x)

p∗(x)
(pK(N)(x)− p∗(x))dF0(x)

¯̄̄̄
< C
√
Nζ(K(N))K(N)−

s
r

= O(
√
Nζ(K(N))K(N)−

s
r )
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The bound for (57) is¯̄̄̄
¯ 1√N

NX
i=1

(δ̂K(N)(Xi)− δK(N)(Xi))
Ti − pK(N)(Xi)p

pK(N)(Xi)(1− pK(N)(Xi))

¯̄̄̄
¯ = OP

µ
ζ(K(N))9/2

N1/2

¶
The bound for (58) is¯̄̄̄

¯ 1√N
NX
i=1

Ã
δK(N)(Xi)

Ti − pK(N)(Xi)p
pK(N)(Xi)(1− pK(N)(Xi))

− δ0(Xi)
Ti − p∗(Xi)p

p∗(Xi)(1− p∗(Xi))

!¯̄̄̄
¯

= OP
³
max

³
K(N)−

1
2
t
r , ζ(K(N))K(N)−

s
r

´´
From these five expressions we obtain¯̄̄̄

¯√N(β̂ew − β0)− 1√
N

NX
i=1

½µ
Ti.Yi
p∗(Xi)

− β0

¶
− µ1(Xi)
p∗(Xi)

(Ti − p∗(Xi))
¾¯̄̄̄
¯ (63)

= OP

µ
ζ(K(N))3√

N

¶
+OP

³√
Nζ(K(N))2K(N)−2

s
r

´
+OP

¡
ζ(K(N))5/2K(N)−

s
r

¢

+OP (ζ(K(N))K(N)
− s
r ) +OP

µ
ζ(K(N))2√

N

¶
+O(

√
Nζ(K(N))K(N)−

s
r ) + OP

µ
ζ(K(N))9/2√

N

¶

+OP
³
max

³
K(N)−

1
2
t
r , ζ(K(N))K(N)−

s
r

´´

= OP
³√
Nζ(K(N))2K(N)−2

s
r

´
+OP

¡
ζ(K(N))5/2K(N)−

s
r

¢
+OP

µ
ζ(K(N))9/2√

N

¶
Note that the second term of the final expression is a bias term, the third a variance term,

and the first a combination of a variance and bias term.

As noted ζ(K) depends on the sequence of approximating functions. For power series

we have ζ(K) = O(K). If we consider sequences K(N) = N c we can find the range of c for

which (63) is oP (1). Substitution in the right-hand side of (63) gives that the first term on
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the right hand side requires that c > 1
4(s/r−1) , the second that s/r > 5/2 and the third that

c < 1/9. These inequalities can be simultaneously satisfied if s/r ≥ 4. ¤
Proof of Theorem 2:

Define

ΨK = − 1
N

NX
i=1

YiTi
p∗(Xi)2

RK(Xi) (64)

Ψ̂K = − 1
N

NX
i=1

YiTi
p̂K(Xi)2

RK(Xi) (65)

Σ̂K =
1

N

NX
i=1

RK(Xi)R
K(Xi)

0 (66)

Then Ψ0
KΣ̂

−1
K R

K(x) is the predicted value in a least squares series regression of − YiTi
p∗(Xi)2

on RK(Xi)
15. This predicted value estimates −E(Y |x)

p∗(x) which is the conditional expectation

(given X = x) of the derivative of the moment condition with respect to p∗. The usual

bound for series estimators applies

sup
x∈X

¯̄̄̄
Ψ0KΣ̂

−1
K R

K(x) +
µ1(x)

p∗(x)

¯̄̄̄
≤ C1ζ(K(N))OP

Ãr
ζ(K(N))

N

!
+ C2K(N)

− s0
r (67)

with s0 the number of continuous derivatives of µ1(x). Also¯̄̄¯̄̄
Ψ̂K −ΨK

¯̄̄¯̄̄
=

¯̄̄̄
¯
¯̄̄̄
¯ 1N

NX
i=1

(p̂K(Xi)− p∗(Xi))(p∗(Xi) + p̂K(Xi))
p̂K(Xi)2p∗(Xi)2

YiTiR
K(Xi)

¯̄̄̄
¯
¯̄̄̄
¯ (68)

≤ 1

N

NX
i=1

¯̄̄̄
p∗(Xi) + p̂K(Xi)
p̂K(Xi)2p∗(Xi)2

¯̄̄̄
|p̂K(Xi)− p∗(Xi)| |Yi|Ti

¯̄¯̄
RK(Xi)

¯̄¯̄
As in the proof of Theorem 1 we have that p̂K(x) is bounded from 0 and 1 on X if N →∞
and hence we have the following bound for (68)

C sup
x∈X

|p̂K(x)− p∗(x)| sup
x∈X

¯̄¯̄
RK(x)

¯̄¯̄ 1
N

NX
i=1

|Yi|+ oP (1) (69)

15The number of terms in this series estimator need not be equal to that in the series estimator of the
propensity score. The notation can be changed to reflect this.
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= C1ζ(K(N))
2OP

Ãr
ζ(K(N))

N

!
+ C2ζ(K(N))

2K(N)−
s
r

We use the bounds (67) and (69) to obtain a bound on

α̂K(t, x)− α(t, x) =
³
Ψ̂K −ΨK

´0
Σ̂−1K R

K(x)(t− p̂K(x)) (70)

+

·
Ψ0
KΣ̂

−1
K R

K(x) +
µ1(x)

p∗(x)

¸
(t− p̂K(x)) + µ1(x)

p∗(x)
(p̂K(x)− p∗(x))

Under the asymptotic identification condition

sup
x∈X

|α̂K(t, x)− α(t, x)| ≤ C1
¯̄̄¯̄̄
Ψ̂K −ΨK

¯̄̄¯̄̄
sup
x∈X

¯̄¯̄
RK(x)

¯̄¯̄
(71)

+C2 sup
x∈X

¯̄̄̄
Ψ0
KΣ̂

−1
K R

K(x) +
µ1(x)

p∗(x)

¯̄̄̄
+ C3 sup

x∈X
µ1(x) sup

x∈X
|p̂K(x)− p∗(x)|

Because X is compact and µ1(x) is continuous, supx∈X µ1(x) < ∞. Substitution of the
bounds (67) and (69), collecting terms of the same order and omitting terms of lower order

gives the bound

sup
x∈X

|α̂K(t, x)− α(t, x)| (72)

≤ C1ζ(K(N))3OP
Ãr

ζ(K(N))

N

!
+ C2ζ(K(N))

3K(N)−
s
r + C3K(N)

− s0
r

It can be shown that the difference between (15) and (14) is bounded by (72) (details of

these calculations are available from the authors). Under the rates specified in Theorem 1

this bound is op(1). Hence (15) is a consistent estimator for (14).

¤

Proof of Theorem 4: The derivation of the efficiency bound follows the proof in Hahn

(1998). The density of (Y (0), Y (1), T,X) with respect to some σ−finite measure is

q(y(0), y(1), t, x) = f(y(0), y(1)|x)e(x)t(1− e(x))1−tf(x).

32



The density of the observed data (y, t, x), using the unconfoundedness assumption, is

q(y, t, x) = [f1(y|x)e(x)]t [f0(y|x)(1− e(x))]1−t f(x),

where f1(·|x) =
R
f(y(0), ·|x)dy(0), and f0(·|x) =

R
f(·, y(1)|x)dy(1). Consider a regular

parametric submodel indexed by θ, with density

q(y, t, x|θ) = [f1(y|x, θ)e(x)]t [f0(y|x, θ)(1− e(x))]1−t f(x, θ),

which equals q(y, t, x) for θ = θ0. Note that θ does not enter into the term e(x), because we

are assuming that the propensity score is known. The score is given by

d

dθ
log q(y, t, x|θ) = s(y, t, x|θ) = t · s1(y|x, θ) + (1− t) · s0(y|x, θ) + sx(x, θ),

where

s1(y|x, θ) =
d

dθ
log f1(y|x, θ),

s0(y|x, θ) =
d

dθ
log f0(y|x, θ),

sx(x, θ) =
d

dθ
log f(x, θ).

The tangent space of the model is the set of functions

S = {t · s1(y, x) + (1− t) · s0(y, x) + sx(x)}

for s1, s0, and sx satisfyingZ
s1(y, x)f1(y|x)dy = 0, ∀xZ
s0(y, x)f0(y|x)dy = 0, ∀xZ
sx(x)f(x)dx = 0.

We are interested in estimating

τwate ≡
R R

g(x)yf1(y|x)f(x)dydx−
R R

g(x)yf0(y|x)f(x)dydxR
g(x)f(x)dx
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So for the parametric submodel indexed by θ,

τwate(θ) ≡
R R

g(x)yf1(y|x, θ)f(x, θ)dydx−
R R

g(x)yf0(y|x, θ)f(x, θ)dydxR
g(x)f(x, θ)dx

We need to find a function Fτ (y, t, x) such that for all regular parametric submodels,

∂τwate(θ0)

∂θ
= E [Fτ (Y, T,X)s(Y, T,X|θ0)]

First we calculate ∂τwate(θ)
∂θ

. Let µg ≡
R
g(x)f(x)dx. Then

∂τwate(θ0)

∂θ
=

1

µg

·Z Z
g(x)ys1(y|x, θ0)f1(y|x, θ0)f(x, θ0)dydx−

Z Z
g(x)ys0(y|x, θ0)f0(y|x, θ0)f(x, θ0)dydx

¸

+
1

µg

·Z
g(x) {E[Y (1)− Y (0)|X = x]− τwate} sx(x, θ0)f(x, θ0)dx

¸
.

The following choice for Fτ satisfies the condition:

Fτ (Y, T,X) =
T · g(X)
µg · e(X) (Y − E[Y (1)|X])−

(1− T ) · g(X)
µg · (1− e(X)) (Y − E[Y (0)|X])

+
g(X)

µg
(E[Y (1)− Y (0)|X]− τwate) .

Hence τwate is pathwise differentiable. By Theorem 2, in section 3.3 of Bickel, Klaassen,

Ritov, and Wellner (1993), the variance bound is the expected square of the projection of

Fτ (Y, T,X) on S. Since Fτ ∈ S, the variance bound is

E[Fτ (Y, T,X)2] = E
·

g(X)2

(µg)2e0(X)
V (Y (1)|X)

¸
+ E

·
g(X)2

(µg)2(1− e0(X))V (Y (0)|X)
¸

+E
·
g(X)2

(µg)2
(E(Y (1)|X)− E(Y (0)|X)− τwate)

2

¸
¤
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