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Summary Discrete choice models are usually derived from the assumption of ran-
dom utility maximization. We consider the reverse problem, whether choice proba-
bilities are consistent with maximization of random utilities. This leads to tests that
consider the variation of these choice probabilities with the average utilities of the
alternatives. By restricting the range of the average utilities we obtain a sequence
of tests with fewer maintained hypotheses. In an empirical application, even the
test with the fewest maintaned hypotheses rejects the hypothesis of random utility
maximization.

1. Introduction

Consider an economic agent who must choose one of I alternatives that are indexed
by i = 1, . . . , I. We assume that the agent has ranked the I alternatives. This ranking
can always be represented by a utility function ui, i = 1, . . . , I with ui the utility of
alternative i and ui ≥ uj if and only if i is ranked at least as high as j. In this discrete
choice problem, a rational agent chooses the most preferred alternative which is also the
alternative that yields the highest level of utility.

Suppose that we observe the choice made by the agent. Can we test whether the
agent has made a rational choice, i.e. has chosen the most preferred, utility-maximizing
alternative? If we can observe or measure the utilities ui, then testing for rational be-
haviour is straightforward. If we have no information on the utilities ui, then any choice
can be rationalized by an appropriate choice of the utilities, and only by observing re-
peated choices with identical utilities of the alternatives can we hope to discover irrational
behaviour.

In this paper, we take an intermediate position, because we assume that we have some
but limited knowledge of the utilities attached to the alternatives. We assume that this
lack of knowledge can be adequately represented by letting the I-vector of utilities be a
draw from an I-variate distribution, of which we know the mean. Hence, we can write

ui = −vi + εi, i = 1, . . . , I A (1)

where −vi is the known mean of ui, and εi is a zero mean random variable. Expressing
the mean as −vi simplifies conditions that involve cross-derivatives. It is also consistent
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with the special case that the mean utility is equal to y − pi with y income or total
expenditure and pi the price of alternative i (y does not affect the preference ordering
and can be omitted). The joint distribution function of the I-vector ε is denoted by F .
The model in equation (1) is the (additive) random utility model.

Imperfect knowledge of the utilities of the alternatives makes it harder to predict the
behaviour of the agent. If we assume that the agent has a decision rule based on the
utilities, we can derive choice probabilities Pi(v), i = 1, . . . , I, that specify the probability
that alternative i is chosen for a given decision rule and a given distribution of the utility
levels. In particular, we can derive the choice probabilities on the assumption that the
agent makes a rational choice, i.e. that he chooses the alternative with the highest level
of utility.

If the vector of average utilities v is known, we can identify the choice probabilities
Pi(v), i = 1, . . . , I by observing repeated choices of an individual if ε reflects intrapersonal
variation in utilities, or by observing the choices of a group of individuals with the same
value of v if ε reflects interpersonal variation in utilities. In applications, the number of
individuals with the same value of v is small, because v is a function of the observed
characteristics of the alternatives that may vary in the population1. If we specify v as
a parametric function of these characteristics and also specify a parametric distribution
for ε, a decision rule that depends solely on the random utilities gives an expression
for the choice probabilities that is known up to a vector of parameters and can be
estimated by MLE with data from a sample of the population. For instance, a multivariate
normal distribution for ε together with the assumption of random utility maximization
yields multinomial probit choice probabilities, and if the components of ε are i.i.d. with
an extreme value distribution we obtain the multinomial logit model, again under the
assumption of (random) utility maximization. Of the specifications that are routinely
used in empirical applications only the nested multinomial logit model does not impose
the assumption of (random) utility maximization.

Matzkin (1992, 1993) shows that if the assumption of random utility maximization
is maintained and if the functions v satisfy certain conditions2, the functions v and
the distribution of ε are nonparametrically identified. Because we consider tests of the
hypothesis of (random) utility maximization, we cannot assume that this hypothesis holds
and Matzkin’s results do not apply. Instead we assume that v is specified as a parametric
function of the characteristics. For the choice probabilities Pi(v), i = 1, . . . , I we choose a
flexible parametric function of v that is not consistent with (random) utility maximization
for certain parameter values, e.g. the unrestricted nested multinomial logit model. An
alternative is to consider the choice probabilities as a semi-parametric (multiple) index
model and to estimate the parameters of v together with the functions Pi, i = . . . , I. The
tests proposed below depend on the specification of v, and a rejection of random utility
maximization may be due to an incorrect specification of v. As far as we know, Matzkin’s
nonparametric estimator has not been used in empirical research. Current practice is to
specify v as a parametric function of the characteristics. The estimated model is then

1Characteristics of the alternatives vary in the population, if their valuation depends on observed
characteristics of the individuals. These observed individual characteristics that are the same in al
alternatives may enter separately in v.

2She considers various restrictions, e.g. linear homogeneity in the subvector of the characteristics
that vary over the alternatives. This generalizes the linear parametric specification that is used in most
parametric models of the choice probabilities.
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used e.g. to study the effect of the introduction of new alternatives. Because this relies on
the assumption of stochastic utility maximization it is of interest to test this hypothesis.
Rejection leads to caution in the use of the estimated model. If a respecified model passes
the test, it increases the confidence in counterfactuals that are based on stochastic utility
maximization.

Our tests are based on the choice probabilities as a function of v with v in some set
V ⊆ IRI , i.e. we require that the choice probabilities satisfy a number of conditions on this
set. In a finite sample of size T , we can obtain estimates Pi(vt), i =, . . . , I, t = . . . , T , and
this suggests that the smallest set V that we should consider is the set vt, t = 1, . . . , T .
The other extreme is to choose V = IRI , but the requirement that the choice probabilities
are consistent with stochastic utility maximization on the latter set may be too strong,
if the vt in the sample are in a small subset of IRI . An intermediate case is to test
whether the choice probabilities are consistent with utility maximization on a subset V
that contains vt, t = 1, . . . , T , because on that subset the estimated choice probabilities
are more reliable.

The compatibility problem has been studied before. First, there is an analogy with
the classical problem of integrability of demand functions. McFadden (1981) explores this
analogy which, of course, is not complete, because random utility models do not assume
that agents have identical preferences. Second, there is a considerable literature on re-
vealed stochastic preference. A book by Chipman, McFadden, and Richter (1990) surveys
this field. An important result is the equivalence of stochastic utility maximization and
the strong axiom of revealed stochastic preference (McFadden and Richter (1990)) that
generalizes a classical result of Houthakker (1950) to random choice models. However,
there is little overlap between our results and the results in the literature on revealed
stochastic preference. The latter literature gives tests for rationality that apply, if the
agent’s choice is restricted to subsets of the I alternatives. Note the analogy with the
classical integrability problem, where demands vary due to changes in prices and total
expenditure (or level of utility), i.e. due to changes in the choice set. In our conditions
for rational choice, agents choose on all occasions between all I alternatives. However,
the I-variate distribution of utility levels differs, either over time between choices of a
single agent, or over agents because of differences in the non-random components v.

Our results follow on a much smaller set of papers (Williams (1977), Daly and Zachary
(1979), Börsch-Supan (1990)). The main advantage of our results is their relevance for
econometric practice. In econometric applications there usually is no variation in the
choice set, but there is variation in v. We are interested in necessary and sufficient
conditions that can lead to econometric tests of the hypothesis of stochastic utility max-
imization. Although much work remains to be done, we believe that our conditions can
be used to construct such tests.

The plan of the paper is as follows. In section 2 we study the additive random utility
model of equation (1). Section 3 contains necessary and sufficient conditions for global
compatibility. We also consider perfect aggregation of individual preferences, and ask
whether the resulting representative agent model is helpful for studying the compati-
bility problem. In section 4 we derive conditions for local compatibility for two classes
of sets of non-random components V. Section 5 contains an application of the theory
to choice of mode of payment. Section 6 concludes and gives some directions for future
research. Because we try to be comprehensive, we include results that have appeared
before. However, we provide new proofs for some of these results, so that the reader may
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find it worthwhile to reconsider known results.

2. Additive Random Utility, Stochastic Preferences, and Choice

Probabilities

In equation (1) we have specified the basic Additive Random Utility Model (ARUM)
that we use to represent the preferences. With respect to the joint distribution function
of the random components we make the following assumptions.

Assumption 1 (independence). The joint distribution function of ε does not depend on v
for all v ∈ V.

Manski (1988b) considers estimation of binary choice models under the weaker as-
sumption of median independence. Matzkin (1993) uses Manski’s arguments to establish
nonparametric identification of v as a function of characteristics of the alternatives that
may vary over individuals, if the ε are independent and identically distributed with a
distribution that depends on the characteristics. In that case the distribution of ε is not
identified, and the identifiability of that distribution is essential for a test of stochastic
utility maximization (Manski (1988a)).

In the ARUM the preference ordering is unchanged if we add a constant to all vi, i =
, . . . , I. This suggests that if individuals choose the alternative with the highest utility,
the choice probabilities Pi(v), i = 1, . . . , I should also be unchanged under this operation,
i.e. they are translation invariant. If the independence assumption does not hold, then
the choice choice probabilities do not necessarily have this property. For two alternatives
the choice probability under utility maximization is P1(v) = H(v2−v1|v) with H the cdf
of ε2 − ε1 that depends on v, and only if the dependence is through v2 − v1 the choice
probability is translation invariant. Failure of the translation invariance of the choice
probabilities is evidence that the independence assumption does not hold.

The other assumptions on the distribution of ε are

Assumption 2 (absolute continuity). The joint distribution of ε is absolutely continuous
with respect to Lebesgue measure on IRI . In other words, any (Borel-measurable) set of
measure 0 according to Lebesgue measure is assigned measure 0 under F .

Assumption 3 (non-defectiveness). The joint distribution of ε is non-defective:

lim
ε→∞F (ε) = 1,

lim
ε→−∞F (ε) = 0.

A consequence of the assumptions of absolute continuity and non-defectiveness3 of F
is, that

Pr(ui = uj) = 0, i �= j = 1, . . . , I,

i.e. the probability of ties is 0.
3Assumption 3 can be weakened to Pr(εi = ∞, εj = ∞) = 0 and Pr(εi = −∞, εj = −∞) = 0 for

i �= j = 1, . . . , I. Allowing e.g. Pr(εi = ∞) > 0 implies that a fraction of the population will choose i
even if vi approaches −∞. We exclude this possibility. In section 4 we shall see that the non-defectiveness
assumption becomes empty if V is bounded.
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An ARUM is defined as a random utility model of the form

u = −v + ε, v ∈ V
with u, v, and ε I-vectors, and where the distribution function of ε, F , satisfies the in-
dependence, absolute continuity and non-defectiveness assumptions. Hence, an ARUM
model is characterized by the triple (I, F,V). The ARUM corresponds to a preference
ordering over the I alternatives in the case that the agent considers attributes not ob-
served by the econometrician or that his choice is genuinely random. Before we use it as
the basic representation of such a preference ordering, we must verify that it does not
impose restrictions on the preference ordering.

Consider an agent who must rank I alternatives. Without loss of generality, we can
assume that he is not indifferent between any two alternatives. Hence, there are I! pos-
sible complete rankings, and each ranking corresponds to a complete, transitive strict
preference ordering R. Denote the set of all such strict preference orderings by R. A
random preference model assigns probabilities πk to all I! preference orderings in R, i.e.
it consists of a pair (R,Π), with Π the (discrete) probability distribution over the I! pref-
erence orderings in R. The random preference model is the most basic way to express
limited knowledge of the preferences of agents. Hence, it is natural to ask whether the
ARUM with a fixed v places restrictions on the random preference model. The answer is
given in the following theorem.

Theorem 1. Every ARUM with V = {v} implies a random preference model (R,Π).
Conversely, every probability distribution Π over R can be represented by an ARUM with
V = {v} for an appropriate choice of F .

Proof. See Appendix A.

The attractive feature of random utility models is that they allow for variation in
preferences. This variation is either interpersonal or intrapersonal. Psychological theories
of choice (Thurstone (1927), Luce (1959)) concentrate on intrapersonal variation, i.e. they
consider repeated choices by the same individual. Because the ε are assumed to represent
idiosyncratic contributions to the utility levels, they are independent between choices.
Econometric models of individual choice are usually estimated from cross-section data,
in which one choice is observed for each of a number of individuals. In this situation it
is most natural think of ε as interpersonal variation in preferences. Usually, the ε are
assumed to be independent between individuals. We need repeated choices by a number
of individuals to distinguish between the two forms of preference variation.

This paper takes the econometric point of view, and as a consequence, we shall con-
centrate on interpersonal variation in preferences. In the additive random utility model,
this variation can be decomposed into variation in the observed utility components v,
and variation in the unobserved utility components ε. The two sources of variation are
assumed to be independent. The tests for rational choice that are discussed in the sequel
exploit the existence of variation in v that is independent of variation in ε. In tests based
on repeated choices by the same individual there is usually no variation in v. Instead,
the individual is faced with restricted choice sets. The individual must choose from a
subset of all I alternatives and this subset varies between choices (see e.g. McFadden
and Richter (1990)). Although such tests are useful in experimental situations, where
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one has control over the choice set, they are less useful in econometric applications based
on cross-section data. In most econometric studies all individuals face the same choice
set. However, the observed utility components v, and, of course, the unobserved utility
components ε, differ between individuals. In this situation the tests that are considered
below apply.

A rational individual chooses the alternative that yields the highest level of utility. If
preferences have the ARUM form, stochastic utility maximization implies that the choice
probabilities are given by

Pi(v) = Pr(ui > uj , i �= j = 1, . . . , I) =∫ ∞

−∞

∂F

∂εi
(εi − vi + v1, . . . , εi, . . . , εi − vi + vI)dεi,

i = 1, . . . , I. A (2)

The last equality follows from the absolute continuity of F .
Although theorem 1 shows that the ARUM representation does not impose any re-

striction of the preference ordering, the assumptions 1-3 do impose restrictions. The rest
of this section deals with the question whether these assumptions are needed. First we
consider assumption 2.

It is well-known that models with a discrete dependent variable may be logically
inconsistent. We refer to such a problem as a coherency failure (see e.g. Heckman (1978),
Gourieroux, Laffont, and Montfort (1980)). A model is incoherent if the mapping from the
unobservable random variables to the observable outcome variables is not well-defined,
and as a consequence the sum of the probabilities of all outcomes is either strictly less than
or greater than 1. In the case of maximization of ARUM preferences, the unobservables
are ε, the observable outcome is the chosen alternative and the mapping of ε to {1, . . . , I}
is the subscript of argmax(u1, . . . , uI).

Now let I = 2, and let F be such that4:

Pr(u1 = u2) > 0.

Then
P1(v) + P2(v) = Pr(u1 > u2) + Pr(u2 > u1) = 1− Pr(u1 = u2) < 1,

the obvious problem being that the mapping from unobservables to observables is not
well-defined if u1 = u2. Hence, to prevent a coherency failure, the distribution of ε2 − ε1
has to be absolutely continuous with respect to the Lebesgue measure on IR. Because the
marginal distribution of ε1 is arbitrary, we can choose it to be absolutely continuous and
hence F is absolutely continuous. We conclude that if the stochastic utility maximization
model is coherent, then F can be chosen to be absolutely continuous5.

We have proved the following theorem.
4This occurs if the distribution of ε2 − ε1 has an atom. It is equivalent to the inclusion of nonstrict

preferences in R.
5Note, however, that distributions exist that yield a coherent stochastic utility maximization model

even though they are not absolutely continuous. For example, let ε1 have a discrete distribution and
let ε2 have a continuous distribution. The distribution of ε2 − ε1 will be continuous and the resulting
stochastic utility maximization model will be coherent even though the joint distribution of ( ε1 ε2 )

′

is not absolutely continuous.



Discrete Choice and Stochastic Utility Maximization4 7

Theorem 2. Consider an individual who has preferences which are of the ARUM form.
We assume that the individual is rational, i.e. that the observed choice is obtained by
stochastic utility maximization. Then this stochastic utility maximization model is coher-
ent if and only if the distribution of

( ε2 − ε1 . . . εI − ε1 )′

is absolutely continuous with respect to Lebesgue measure.

3. Global Compatibility with Stochastic Utility Maximization

3.1. Global Compatibility in Discrete Choice Models

In this section we present a simple derivation of the necessary and sufficient conditions
for the compatibility of choice probabilities Pi(v), i = 1, . . . , I with stochastic utility
maximization. We shall assume that v can take any value in IRI . The necessary and
sufficient conditions were first given by Daly and Zachary (1979). The simple arguments
given here are also helpful in understanding later sections of this paper.

First, we define global compatibility with stochastic utility maximization. Here, and in
the rest of this paper, stochastic utility maximization means maximization of preferences
of ARUM form.

Definition 1. The set of choice probabilities Pi(v), i = 1, . . . , I is globally compatible with
stochastic utility maximization, if for all v ∈ IRI we can write

Pi(v) = Pr(εj − vj < εi − vi; i �= j = 1, . . . , I), i = 1, . . . , I A (3)

with ε a stochastic I-vector with a non-defective and absolutely continuous (with respect
to the Lebesgue measure) distribution that does not depend on v.

The (I − 1)-vectors vi and εi are obtained from the I-vectors v and ε by deleting the
i-th element. Daly and Zachary (1979) state that the following conditions are necessary
and sufficient for global compatibility. If a condition is subscribed by i or i and j, it holds
for all i = 1, . . . , I or i �= j = 1, . . . , I, respectively.

Necessary and sufficient conditions for global compatibility.
For all v ∈ IRI :

Pi(v) ≥ 0,
I∑

i=1

Pi(v) = 1k (C-1)

Pi(v) = Pi(v + cιI) for all c ∈ IR (translation invariance)k (C-2)
lim

vi→−∞Pi(v) = 1, lim
vj→−∞Pi(v) = 0k (C-3)

Pi(v)k is differentiable with respect to vi and

∂(I−1)Pi

(∂v)i
(v) ≥ 0 (non-negativity)k (C-4)

∂Pi

∂vj
(v) =

∂Pj

∂vi
(v) (symmetry).k (C-5)
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In condition (C-4), as well as in the sequel, ∂v1 · · · ∂vi−1∂vi+1 · · · ∂vI is abbreviated
as (∂v)i. These conditions are known in the literature as the Daly–Zachary or Daly–
Zachary–Williams conditions.

Theorem 3 (Daly and Zachary). Conditions (C-1)–(C-5) are necessary and sufficient for
global compatibility with stochastic utility maximization.

Proof. See Appendix B.

The first condition states that all choice probabilities are non-negative and that some
alternative is chosen. According to (C-2), only the differences in average utilities de-
termine the choice probabilities, not the absolute levels. The third condition requires
that an alternative is chosen with probability 1, if its utility increases without bound.
Condition (C-4) states that if all alternatives, except the i-th, become less attractive,
the probability of choosing the i-th alternative should not decrease. Finally, (C-5) is the
discrete choice analogue of the symmetry condition in demand analysis. A comparison
of the conditions (C-1)-(C-5) with those for the integrability of demand systems can be
found in Appendix C.

Remark 1. The definition of global compatibility implies that there exists a stochastic
I-vector ε that satisfies equation (3). The proof shows that the choice of ε is not unique.
The choice probabilities determine h1, and by equation (B-4) also h2, . . . , hI . In other
words, they determine the distributions of ε1 − ε1ιI−1, . . . , εI − εIιI−1. One marginal
distribution, e.g. the distribution of ε1, can be chosen arbitrarily. From equation (B-4)
it follows that any one of the hi determines all the other hi’s. For I = 2 this expression
reduces to

h1(v2 − v1) = h2(v1 − v2),
i.e., h2 is obtained by reflection of h1 around 0.

Remark 2. The original Daly and Zachary (1979) paper does not contain a proof. The
only published proof is that by McFadden (1981) (see his Theorem 5.1, assertion 3,
pp. 212–213, and the proof in the Appendix 5.23). McFadden uses the same construction
of the distribution function of ε, i.e. using alternative 1 as a reference alternative (see
(5.131), p. 263). This establishes directly that

P1(v) = Pr(ε1 − ε1ιI−1 < v1 − v1ιI−1).A (4)

Next, he proves that equation (4) holds for i = 1, . . . , I, by showing that the choice
probabilities can be obtained as minus the gradient with respect to v of a function,
the Social Surplus function that, can be defined using F (see (5.132), p. 264). These
derivatives have the form of equation (2). Implicitly, this establishes that the choice
of 1 as a reference alternative is arbitrary. Our proof is more direct, because we need
not establish the existence and differentiability of a Social Surplus function. Instead, we
make direct use of the symmetry condition (C-5) to show that the choice of the reference
alternative is arbitrary. Our method of proof can be easily adapted to derive conditions
for local compatibility.
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Remark 3. Using theorem 3 we can make a rather surprising observation. Assume that
the population of agents consists of two sub-populations. Fraction p chooses an alternative
by maximizing a (random) utility function. Fraction 1−p picks an alternative at random.
The choice probabilities for the whole population are

Pi(v) = pP̃i(v) + (1− p)1
I
, i = 1, . . . , I,

where the P̃i(v) satisfy (C-1)–(C-5). Now note that the Pi(v) also satisfy (C-1)–(C-5).
Hence, although only a fraction p of the agents makes a rational choice, the population
choice probabilities are compatible with stochastic utility maximization.

Remark 4. The (multinomial) logit and the (multinomial) probit models satisfy the con-
ditions for global compatibility for all values of their parameters. The Nested Multinomial
Logit model satisfies (C-1), (C-2), (C-3) and (C-5) for all parameter values and (C-4)
only if the association parameter is in the (0, 1] interval.

If we let vikl be a k-subvector of vi, and l = 1, . . . ,
(
I−1

k

)
, it is not difficult to see that

(C-4) can be replaced by

Pi(v) is differentiable with respect to vi and
∂kPi

∂vikl
(v) ≥ 0k (C’-4)

Hence, we have

Corollary 1. Conditions (C-1), (C-2), (C-3), (C’-4), and (C-5) are necessary and suffi-
cient for global compatibility with stochastic utility maximization.

The proof of theorem 3 contains a further useful corollary.

Corollary 2. The choice probabilities Pi(v), i = 1, . . . , I are globally compatible with
stochastic utility maximization if and only if there exist density functions h1, . . . , hI on
IR(I−1) that for all v ∈ IRI , i, j = 1, . . . , I satisfy

hi(vi − viιI−1) = hj(vj − vjιI−1), i �= jA (5)

and

Pi(v) =
∫ vi−viιI−1

−∞
hi(w)dw.A (6)

By a change of variables we obtain a third corollary.

Corollary 3. The choice probabilities Pi(v), i = 1, . . . , I are globally compatible with
stochastic utility maximization if and only if there is a density function h1 on IR(I−1)

such that for all v ∈ IRI and i = 2, . . . , I we have

P1(v) =
∫ v1−v1ιI−1

−∞
h1(w)dw,A (7)

and

Pi(v) =
∫ ∞

vi−v1

∫ wi−1+(v2−v1)−(vi−v1)

−∞
· · ·

∫ wi−1+(vI−v1)−(vi−v1)

−∞
h1(w)dwI−1 · · · dw1dwi−1.A (8)
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This corollary implies that the specification of one density function is sufficient to
determine all choice probabilities. This density function is the density function of the
(I − 1)-vector (ε2 − ε1, . . . , εI − ε1)′, where the first alternative is arbitrarily taken as a
reference alternative.

4. Local Compatibility with Stochastic Utility Maximization

In the definition of global compatibility the observed utility components v can take any
value in IRI . In local compatibility v is restricted to a subset of IRI . Of course, local
compatibility is weaker than global compatibility.

Definition 2. The set of choice probabilities Pi(v), i = 1, . . . , I is locally compatible with
stochastic utility maximization on a set V ⊂ IRI , if for i = 1, . . . , I and all v ∈ V we can
write

Pi(v) = Pr(εj − vj < εi − vi; j = 1, . . . , I, j �= i)k (9)

with ε a stochastic I-vector with a non-defective and absolutely continuous distribution
that does not depend on v.

Local compatibility was introduced in Börsch-Supan (1990), although he does not give
a formal definition of the concept. Local compatibility is closer to econometric practice
than global compatibility. In practice, v does not take on all values in IRI , but we usually
have a finite number of observed vt, t = 1, . . . , T . We specify choice probabilities, and
ask whether these choice probabilities are consistent with utility maximization on a
set V with vt ∈ V for t = 1, . . . , T . In Börsch-Supan’s study the choice probabilities
are obtained by fitting a flexible parametric functional form, the Nested Multinomial
Logit model (NMNL), to the observed vt and the corresponding observed choices. If
the association parameters of the NMNL model are outside the (0, 1] interval, condition
(C-4) is violated. The other conditions for compatibility are satisfied for all parameter
values (Börsch-Supan (1990)). Hence, the NMNL model is not globally compatible if a
dissimilarity parameter is outside the (0, 1] interval.

Now choose a, b ∈ IRI such that a ≤ vt ≤ b for t = 1, . . . , T . We can ask under
which conditions the fitted choice probabilities are locally compatible with stochastic
utility maximization on V = [a, b]6. The following theorem gives necessary and sufficient
conditions.

Theorem 4. The choice probabilities Pi(v), i = 1, . . . , I are locally compatible with stochas-
tic utility maximization on a bounded interval V = [a, b] if and only if for all v ∈ [a, b]
(C-1), (C-2), (C’-4) and (C-5) hold.

Proof. See Koning and Ridder (1994).

Remark 5. This result is stronger than that obtained in Börsch-Supan (1990). First, we
do not require that (C-1), (C-2), and (C-5) are globally satisfied. Second, the theorem

6Strictly, local compatibility on a bounded interval is not possible: if equation (9) holds for all v ∈ [a, b]
it holds for all v such that v + cιI ∈ [a, b] for some c ∈ IR. Hence, we must choose a normalization. For

that purpose, we express v in deviation from v1, and we take V as the set
{

v ∈ IRI | v − v1ιI ∈ [a, b]
}
.

Because a1 = b1 = 0, it suffices to specify Ṽ = [a1, b1] ⊂ IR(I−1).
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gives necessary and sufficient conditions. Third, Börsch-Supan does not prove local com-
patibility as defined above. His suggested distribution of ( ε2 − ε1 . . . εI − ε1 )′ is not
absolutely continuous with respect to the Lebesgue measure, and he does not indicate
how the resulting ties will be resolved. The proof uses the representation of the choice
probabilities of corollary 3 of theorem 3. We find a density function h∗1 that satisfies this
equation for all v ∈ [a, b].

Remark 6. Condition (C-3) is not required for local compatibility. Since equation (9)
only has to be satisfied on an interval, we have more freedom in choosing the distribution
of ε. In particular, we can always choose it to be non-defective.

Remark 7. The conditions in theorem 4 and corollary 1 of theorem 3 are identical, except
for (C-3).

Theorem 4 gives necessary and sufficient conditions for local compatibility on an in-
terval. If the estimated vt, t = 1, . . . , T are bounded, this is a natural choice, in particular
if the model is to be used to predict the effect of changes in the characteristics of the
alternatives and/or the individuals on the choice probabilities. If the set V is not an in-
terval, then the conditions in Theorem 4 are neither necessary, nor sufficient for random
utility maximization.

We consider choice between two alternatives, i.e. I = 2. Let us assume that the choice
probabilities are translation invariant, and differentiable, i.e. (C-1), (C-2), and the first
part of (C’-4) are satisfied. Then for I = 2 (C-5) is also satisfied7. The choice probabilities
P1(v) and P2(v) can be expressed as

P1(v) =
∫ v2−v1

−∞
h1(w)dw,

P2(v) =
∫ ∞

v2−v1

h1(w)dw,

with h1(w) =
∂P1(0,w)

∂w . Let h1 and P1 be as in figure 1.
Note that h1 is non-negative on Ṽ1 = (−∞, w0]∪ [w1,∞) and hence (C’-4) is satisfied.

However, it is not possible to find a density function h∗1 that coincides with h1 on Ṽ1 and
also satisfies

P1(v) =
∫ v2−v1

−∞
h∗1(w)dw,

P2(v) =
∫ ∞

v2−v1

h∗1(w)dw,

because P1(0, w1) < P1(0, w0) and hence h∗1 has to be negative for some values of w. The
conditions in Theorem 4 are hence not sufficient for compatibility on Ṽ1. It is also not
necessary, because local compatibility holds on e.g. Ṽ2 and (C’-4) does not hold on this
set.

7These assumptions apply if we fit a flexible functional form, that satisfies all conditions, except the
non-negativity condition.
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Figure 1. Compatibility for arbitrary intervals

The key is that nonnegativity (C’-4) on an interval implies monotonicity, but that is
not true on a set that is the union of disjoint intervals as in the example. The assumption
of monotonicity is fundamental, and in the example the choice probability is compatible
with utility maximization for any set on which P1(0, w) is monotonous. If V = vt, t =
1, . . . , T , then monotonicity is equivalent to

v2t − v1t ≥ v2s − v1s ⇒ P1(v1t, v2t) ≥ P1(v1s, v2s).A (10)

Next we generalize monotonicity to choices between I ≥ 3 alternatives.
Is it possible to find necessary and sufficient conditions for other choices of V? We

shall consider a choice of V that can be seen as the opposite extreme, namely a finite
set of distinct points. This choice of V is of considerable practical interest, because in
practice an econometrician has a finite sample V = {v1, . . . , vT } of observed average
utilities. If for every vt he observes a large number of choices made by distinct agents, he
can determine the corresponding choice probabilities Pi(vt), i = 1, . . . , I. If the number
of observed choices for each t is small, he can use either a local averaging method,
e.g. a kernel estimate, or a flexible functional form, e.g. the NMNL model, to estimate
Pi(vt), i = 1, . . . , I, t = 1, . . . , T . How can he decide whether these (estimated) choice
probabilities are (locally) compatible with stochastic utility maximization (on V)?

First, we consider the case with three alternatives (I = 3) with the first alternative
as the reference alternative. The observed utilities of the first observation is shown as
point w̃1 in Figure 2. If the choices are made by stochastic utility maximization, then,

c
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Figure 2. Choice probabilities and compatibility (w̃t = (v2t − v1t, v3t − v1t), t = 1, 2, 3).

according to corrolary 3, we can write the choice probabilities as

Pi(v) =
∫

Bi(v)

h1(w)dw,A (11)

with

B1(v1) =
{
w ∈ IR2 | w1 ≤ v2 − v1, w2 ≤ v3 − v1

}
B2(v1) =

{
w ∈ IR2 | w1 > v2 − v1, w2 ≤ v3 − v1

}
B3(v1) =

{
w ∈ IR2 | w1 > v2 − v1, w2 > v3 − v1

}
.

The first observation induces a partition of IR2 into three sets, and the three choice
probabilities correspond to the integral of the the density function of the random terms
over these three sets. If we add a second observation (w̃2), we obtain a similar partition
denoted by B1(v2), B2(v2), and B3(v2). The third observation w̃3 gives the partition
B1(v3), B2(v3), and B3(v3). The intersection of these three partitions is itself a partition
of IR2 and this partition consists of the sets C111 to C333 in Figure 2. The order of the
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indices of the sets C reflect the observation, and the index itself indicates to which B-set
the set belongs, so for example C213 = B2(v1) ∩B1(v2) ∩B3(v3). Hence, each set Bi(vt)
can be written as the union of a collection of sets C, for example in Figure 2 we have
B1(v3) = C111 ∪ C311 ∪ C211 ∪ C221. We denote the index set over which the union is
taken by J∗

i (vt), so by definition Bi(vt) = ∪J∗
i
(vt)Ci1i2···iT

. Now we can rewrite (11) for
each observation and for each choice probability as

Pi(v) =
∫

Bi(v)

h1(w)dw =
∑

J∗
i
(vt)

∫
Ci1i2···iT

h1(w)dw.A (12)

If we denote each term of the summation by Ai1i2···iT
, so

Ai1i2···iT
=

∫
Ci1i2···iT

h1(w)dw,

we are able to give the general result.

Theorem 5. The choice probabilities Pi(v), i = 1, . . . , I are locally compatible with stochas-
tic utility maximization on V = {v1, . . . , vT } if and only if condition (C-1) holds on V
and the system of equations in Ai1i2···iT

Pi(vt) =
∑

(i1,i2,...,iT )∈J∗
i
(vt)

Ai1i2···iT
(13)

t = 1, . . . , T, A i = 1, . . . , I has a non-negative solution.

Proof. See Appendix D.

In the example of Figure 2, the choice probabilities are compatible with stochastic
utility maximization if the following set of equations has a non-negative solution:

P1(v1) = A111 (14-a)
P2(v1) = A211 +A213 +A222 +A223 +A221 (14-b)
P3(v1) = A311 +A313 +A333 +A323 (14-c)
P1(v2) = A111 +A311 +A313 +A213 +A211 (14-d)
P2(v2) = A221 +A223 +A323 +A222 (14-e)
P3(v2) = A333 (14-f)
P1(v3) = A111 +A311 +A211 +A221 (14-g)
P2(v3) = A222 (14-h)
P3(v1) = A313 +A333 +A213 +A223 +A323 (14-i)

Remark 8. The existence of a solution to equation (13) implies that the choice proba-
bilities are translation invariant. However, conditions (C-3) and (C-5) are not needed. If
(C-4) holds for all v, then equation (13) has a non-negative solution.
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Remark 9. The equation system in equation (13) has some resemblance with an equation
system in McFadden and Richter (1990) (see (3.8), p. 172). However, as stressed before,
any resemblance is superficial, because the rationality test of theorem 5 is different from
the McFadden/Richter test. The McFadden/Richter test exploits variation in the choice
probabilities if the choice set is restricted to a subset Ci of alternatives, while in the test
of theorem 5 the agents always choose between I alternatives but with varying average
utilities. In the notation of McFadden and Richter, we have m = 1 and B = {1, . . . , I}.
Hence, the only Ci that are used in the test have Ci ⊂ B with B fixed. It is not difficult
to see that in that case the McFadden/Richter test degenerates. It is always possible to
solve their equation system if for all alternatives the probability that the alternative is
most preferred in the (random) preference ordering is positive. For ARUM preferences
(with fixed v) this condition is always satisfied.

As a corollary to theorem 5, we give a necessary condition on the choice probabilities
that can be checked easily.

Corollary 4. If the choice probabilities Pi(v) are compatible with stochastic utility maxi-
mization, then for each pair (t, t′):

Bi(vt) ⊆ Bi(vt′) ⇒ Pi(vt) ≤ Pi(vt′).A (15)

If I = 3, it is easily seen that each pair (t, t′) yields two restrictions of the form (15)
(see also figure 2). If I = 2, the condition of corollary 4 guarantees that the distribution
function of ε2 − ε1 is non-decreasing in v2t − v1t, t = 1, . . . , T and in that case (15) is
also sufficient. This is not true if I ≥ 3, as the following example illustrates8.

In Figure 2 let the vectors of choice probabilities be P (v1) = (0, 0, 1)′, P (v2) =
(0, 1, 0)′ and P (v3) = (1, 0, 0)′, which satisfy condition (C-1). One can easily check that
the observed choice probabilities satisfy the condition of corollary 4. However, the set of
equations (14-a)–(14-i) does not have a non-negative solution for A. Hence, the condition
of Theorem 5 is not satisfied.

The test of theorem 5 is not superfluous: in Appendix E we give an example of choice
probabilities that satisfy the conditions of theorem 5, but that do not satisfy those of
theorem 4.

If we compare theorems 3, 4, and 5, we can make a number of observations. First,
globally compatible choice probabilities are locally compatible on any bounded interval
and also locally compatible on every finite set. Choice probabilities that are locally com-
patible on an interval are also locally compatible on any finite subset of that interval.
Second, the number of conditions diminishes if the ‘measure’ of V becomes smaller. In
theorem 4 we do not need (C-3) and the condition (13) in theorem 5 is implied by the
the non-negativity condition (C-4). The symmetry condition (C-5) is not needed for and
is not implied by local compatibility on a finite set. Translation invariance is implicit in
the condition of theorem 5. Third, if the ‘measure’ of V becomes smaller the freedom
in choosing the distribution of ε increases. Hence, it becomes easier to satisfy the com-
patibility conditions. Finally, we have not considered the case that V is the union of a
number of disjoint intervals. We conjecture that the necessary and sufficient conditions
for that case are that the conditions of theorem 4 hold for every bounded interval and
that for every subset of V the conditions of theorem 5 are satisfied.

8We owe this example to Jan Karel Lenstra.
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5. An Application: Choice of Mode of Payment

In this section we apply the theory in a test of random utility maximization. When
someone pays for an over-the-counter purchase, he has the choice between different modes
of payment. We consider the choice between cash payment and payment by check. Our
data are for the Netherlands in 1987 and at that time payment by credit card was still
rare. The additive random utility model is

νit = −vit + εit = −β′ixt + εit.

The average utility vit is a function of individual characteristics and the amount of
the transaction and that function differs between the alternatives. The data is a sample
of 225 transactions9. For each transaction the mode of payment is recorded, as well as
the amount paid, size of the household, age of the head of the household, gender of the
person making the transaction, and household income.

Let D be a dummy with value 0 if the payment was by cheque and 1 if cash was used.
Under the assumption of random utility maximization, the probability of paying cash is

Pr(D = 1|x) = Pr(ε1 − ε2 ≤ v1 − v2) = F (v1 − v2),A (16)

We have v1t − v2t = β′xt with β = β1 − β2. Because D is a 0-1 variable we have

E(D|x) = Pr(D = 1) = G(β′x).A (17)

and this is in the form of a single index model.
In our test of stochastic utility maximization we follow the example in Section 4.

We maintain the assumptions that the choice probabilities are translation invariant and
differentiable. A test of random utility maximization then amounts to a test of non-
negativity, in this case test of whether F is non-decreasing. A test of global compatibility
tests whether F is non-decreasing everywhere and a test of compatibility on an interval
tests whether that is true on a specific interval, usually an interval that contains β′xt, t =
1, . . . , T . Finally, the weakest test is to check

β′xt ≥ β′xs ⇒ F (β′xt) ≥ F (β′xs)

There are a number of estimators for the parameters β of a single index model. These
estimators estimate β up to scale. We use the average derivative estimator of Stoker
(1991, 1992). This estimator is

√
n consistent. In the second step we estimate F by a

nonparametric (kernel) regression of D on β̂′x. The kernel estimator does not impose
that F is non-decreasing.

The average derivative estimates show that the probability of using cash for a trans-
action depends negatively on the amount of the transaction and positively on the age
and household income of the individual who pays. The estimate of F is shown in Figure 3
for h = 0.071 and h = 0.1010.

9The data are derived from the 1987 wave of a panel, the Intomart Bestedingen Index. The panel has
slightly more than 1000 households. We restrict ourselves to households that have a bank account and
therefore access to both payment alternatives. In case more than one payment has been recorded for one
household we have randomly selected one. More details are given in Koning and Ridder (2000).

10The first choice of bandwidth follows the suggestion in Silverman (1986) for univariate kernel density
estimation.
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Figure 3. Nonparametric regression of choice (cash payment=1) on index, h = 0.071 (solid

line) and h = 0.10 (dashed line).
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The estimate F̂ is not monotonic for both bandwidths. For sufficiently large h the
regression curve is nondecreasing. A search shows that this is the case for h ≥ hc =
.15. Bowman, Jones, and Gijbels (1998) have proposed a test for the hypothesis that a
regression function is non-decreasing. In this test the estimated model is used to simulate
Dt for all t. Using the new sample we reestimate β and F , the latter with the critical
bandwidth hc = .15. We check whether the estimated curve is nondecreasing. This is
repeated a number of times (1000 in our test). The p-value of the test is the fraction non-
monotonic curves in the (1000) simulated samples. With 1000 samples we overwhelmingly
reject the null-hypothesis of monotonicity of the regression curve with h = 0.071: the p-
value is 0.971. For the second curve (h = 0.10), the p-value is 0.944 so also for that curve
monotonicity is decisively rejected.

One reason for the rejection could be that the function v is misspecified, as discussed
in Section 1. To check this we also performed the test for a specification in which the
squares of all variables are included in v. The p-value for this test is .99 and so we still
reject the monotonicity of F .

As argued in Section 4, rejection of monotonicity of F precludes the existence of
an interval on which the choice probability is compatible with stochastic utility maxi-
mization. Hence, in this case the rejection of global compatibility is a rejection of local
compatibility on an interval.

Finally, we compute the fraction of pairs β̂′xt, β̂
′xt+1 with F̂ (β̂′xt) < F̂ (β̂′xt+1). We

have not developed the distribution theory for this test. The fraction can be positive for
non-decreasing functions due to sampling variation in the estimated choice probabilities.
In our example the fraction is 0.16 (37 out of 224).

6. Conclusion

The conditions in the theorems 3, 4, 5 can be used to construct rationality tests in discrete
choice problems. The tests based on theorems 3 and 4 require the estimation of the choice
probabilities for choices that are not observed in the data. In general, this is achieved
by fitting a smooth and sufficiently flexible set of functions to the observed choices. The
test of theorem 3 is completely based on the properties of these functions. The test of
theorem 5 does not require extrapolation of the choice probabilities for average utilities
that are not observed. This test has no maintained assumptions beyond those of the
ARUM. In an empirical example we reject the hypothesis of random utility maximization,
both globally and on an interval.
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Preference ordering Probability Event in ARUM

1 � 2 � 3 π123 D123 : w1 < z1, w2 − w1 < z2 − z1

1 � 3 � 2 π132 D132 : w2 < z2, w1 − w2 < z1 − z2

2 � 1 � 3 π213 D213 : w1 > z1, w2 < z2

2 � 3 � 1 π231 D231 : w2 − w1 < z2 − z1, w2 > z2

3 � 1 � 2 π312 D312 : w2 > z2, w1 < z1

3 � 2 � 1 π321 D321 : w1 > z1, w1 − w2 < z1 − z2

Table A-1. Preference orderings with probabilities and corresponding events in ARUM. w1 =

ε2 − ε1, w2 = ε3 − ε1, z1 = v2 − v1, z2 = v3 − v1.

A. Proof of Theorem 1

Theorem 1. Every ARUM with V = {v} implies a random preference model (R,Π). Conversely,
every probability distribution Π over R can be represented by an ARUM with V = {v} for an
appropriate choice of F .

Proof. Consider an ARUM with non-random utility components v. Let Rk be an arbitrary
complete and transitive strict preference ordering of the I alternatives. Hence, Rk can be written
as

k1 ≺ k2 ≺ k3 ≺ · · · ≺ kI

with {k1, . . . , kI} some permutation of {1, . . . , I}. Define
πk = Pr(uk1 < uk2 < · · · < ukI ), k = 1, . . . , I!.

Because the distribution of ε, and as a consequence, that of u, is absolutely continuous and
non-defective, we have that

Pr(ui = uj) = 0, i 	= j = 1, . . . , I,

and, hence
I!∑

k=1

πk = 1.

Next, we prove the reverse assertion. If I = 2, the ARUM with non-random utility com-
ponents (v1, v2)

′ assigns Pr(ε2 − ε1 < v2 − v1) = π12 to the event that alternative 1 is strictly
preferred over alternative 2. Hence, if we choose

f(ε1, ε2) =




π12φ(ε2 − ε1)φ(ε1)

Φ(v2 − v1)
, ε2 − ε1 < v2 − v1

π21φ(ε2 − ε1)φ(ε1)

1− Φ(v2 − v1)
, ε2 − ε1 > v2 − v1

,

with π12 the probability that 1 is strictly preferred over 2, π21 = 1 − π12, and φ the standard
normal density function, then it is easily seen that the ARUM with this joint density function
of (ε1, ε2)

′ yields the probability distribution Π over the two strict preference orderings.
Next, we consider I = 3. The six possible preference orderings and associated probabilities

are given in table A-1. An ARUM with the given non-random utility components v assigns
utility levels

ui = −vi + εi, i = 1, 2, 3,y (A-1)
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Figure A-1. Integration regions for preference orderings

to the three alternatives. According to the ARUM, the strict preference orderings in the first
column of table A-1 obtain if and only if the events in the third column of the table occur.
Hence, an ARUM that assigns the probabilities of the second column of table A-1 to the six
strict preference orderings of column one is obtained, if we choose a joint density function of
(ε1, ε2, ε3)

′ such that the integrals over the indicated regions are equal to these probabilities.
Note that we only have to find a joint density function of (ε2 − ε1, ε3 − ε1)

′, because all events
can be expressed in terms of these two random variables.
The integration regions in the third column of table A-1 are show in figure A-1. Let h, the

joint density function of (w1, w2)
′, be given by

h(w1, w2) =
πijkφ(w1)φ(w2)∫ ∫

Dijk
φ(s1)φ(s2)ds1ds2

,

(w1, w2) ∈ Dijk, i 	= j 	= k = 1, 2, 3,

with φ the standard normal density function. Then h is clearly a proper density function and
we have:W ∫ ∫

Dijk

h(w1, w2)dw1dw2 = πijk, i 	= j 	= k = 1, 2, 3.
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It is obvious that if we choose the joint density function of (ε1, ε2, ε3)
′

f(ε1, ε2, ε3) = h(ε2 − ε1, ε3 − ε1)φ(ε1)

then the ARUM in equation (A-1) with this joint distribution yields the random preference
model with probability distribution Π over the six strict preference orderings.
For I ≥ 4, let Rk, k = 1, . . . , I! be all strict preference orderings of the I alternatives. Strict

preference ordering Rk gives a complete ranking of the I alternatives

k1 ≺ k2 ≺ · · · ≺ kI ,

with {k1, . . . , kI} some permutation of {1, . . . , I}. Define
Dk =

{
ε ∈ IRI | (εki − ε1)− (εki+1 − ε1) < (vki − v1)

−(vki+1 − v1), i = 1, . . . , I − 1
}

k = 1, . . . , I!.y (A-2)

Let
w = ε1 − ιI−1ε1,

with ε1 the (I − 1)-subvector of ε that does not contain the first component ε1 and ιI−1 an
(I − 1)-vector of ones. Define

D̃k =
{
ε1 − ιI−1ε1 ∈ IR(I−1) | ε ∈ Dk

}
, k = 1, . . . , I!.

Note that
I!⋃

k=1

Dk = IR
I , Dk

⋂
Dl = ∅, k 	= l.

Hence, it is obvious that
I!⋃

k=1

D̃k = IR
(I−1).y (A-3)

If w ∈ D̃k

⋂
D̃l, then there are ε ∈ Dk, ε̃ ∈ Dl with

ε1 − ιI−1ε1 = ε̃1 − ιI−1ε̃1.

From equation (A-2) we see that ε̃ ∈ Dk, and we conclude that

D̃k

⋂
D̃l = ∅, k 	= l.y (A-4)

The ARUM that assigns probabilities πk to the strict preference ordering Rk, k = 1, . . . , I! has
a joint density function of ε that can be constructed as follows. Define the density function

h(w) = πk

∏I−1

i=1
φ(wi)∫

Dk

∏I−1

i=1
φ(si)ds

, w ∈ D̃k.

From equation (A-3) and equation (A-4) it follows that this is a proper density function. The
joint density function of ε is:

f(ε) = h(ε2 − ε1, . . . , εI − ε1)φ(ε1)
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B. Proof of Theorem 3

Proof. (Necessity) (C-1) follows directly from the uniqueness (with probability one) of the utility
maximizing choice. Translation invariance is a direct consequence of equation (3). The non-
defectiveness of the distribution of ε implies (C-3). The differentiability almost everywhere and
non-negativity follow from equation (2) and the absolute continuity of the distribution of ε.
Finally, we have

∂Pj

∂vi
(v) =

∫ ∞

−∞

∂2F

∂εi∂εj
(εj − vj + v1, . . . , εj , . . . , εj − vj + vI)dεj

=

∫ ∞

−∞

∂2F

∂εi∂εj
(εi − vi + v1, . . . , εi, . . . , εi − vi + vI)dεi

=
∂Pi

∂vj
(v),

where the second equality is obtained by the change of variable εi = εj + vi − vj .
(Sufficiency) Translation invariance implies that we can write

Pi(v) = Pi(v − viιI) = Hi(v
i − viιI−1)W (B-1)

with Hi a function defined on IR
(I−1). Let for w ∈ IR(I−1)

hi(w) =
∂(I−1)Pi

(∂w)i
(w).y (B-2)

Because of (C-4) and equation (B-1) hi exists and is non-negative on IR
(I−1). Moreover

Pi(v) =

∫ vi−viιI−1

−∞
hi(w)dw.y (B-3)

Note that from (C-5) for i 	= j and all v ∈ IRI

hi(v
i − viιI−1) = hj(v

j − vjιI−1).y (B-4)

Comparison of equation (B-3) and equation (3) indicates that we must show that there exists
a random I-vector ε with an absolutely continuous and non-defective distribution such that for
i = 1, . . . , I

wi = εi − εiιI−1

has density function hi.
Let k be an arbitrary non-defective density function and specify the distribution function of

ε by

F (ε) =

∫ ε1

−∞
H1(ε

1 − sιI−1)k(s)ds.

The corresponding density function is, of course,

f(ε) = h1(ε
1 − ε1ιI−1)k(ε1).

Note that in the construction of F and f we started from 1 as a ‘reference alternative’. A
transformation of ε to w1 and ε1 shows that ε

1−ε1ιI−1 has density function h1 (and the density
function of ε1 is k). We need to show that ε

i − εiιI−1 has density function hi for i = 2, . . . , I.
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Without loss of generality we choose i = I (if necessary, we re-label the alternatives). Now
consider the transformation from ε to

η1 =Wε1 − εI

...
ηI−1 =WεI−1 − εI

ηI =WεI

.

The corresponding density function of η is

g(η) = h1(η2 − η1, . . . , ηI−1 − η1,−η1)k(η1 + ηI).y (B-5)

It is easily seen that equation (B-4) implies that

h1(η2 − η1, . . . , ηI−1 − η1, ηI − η1) = hI(η1 − ηI , . . . , ηI−1 − ηI).

Setting ηI = 0 and substituting in equation (B-5) gives

g(η) = hI(η1, . . . , ηI−1)k(η1 + ηI).

Integrating out ηI shows that ε
I − εIιI−1 has density function hI .

The distribution of ε is absolutely continuous by construction (and the marginal distribution
of ε1 is by construction non-defective). It is also non-defective, because

F (ε) =

∫ ε1

−∞
P1(0, ε

1 − sιI−1)k(s)ds

and, hence from (C-3)
lim

ε1→−∞
F (ε) = 0,

lim
ε1→∞

F (ε) =

∫ ε1

−∞
k(s)ds,

where the latter equality follows from

lim
v1→∞

P1(0, v
1) =Wlim

v1→−∞
P1(v − v1ιI) =Wlim

v1→−∞
P1(v) = 1.

C. A Comparison Between the Daly–Zachary Conditions and

the Conditions for the Integrability of Demand Systems

The conditions (C-1), (C-4) and (C-5) resemble conditions that demand functions must satisfy to
be compatible with utility maximization. It is well known that demand functions are compatible
with utility maximization, if they have certain properties (see for instance Varian (1984)), as
symmetry and non-negative definiteness of the Slutsky matrix. It is of interest to see how these
properties compare to the Daly–Zachary conditions (C-1)–(C-5) above. For the sake of the
analogy, we interpret v as the prices of the alternatives. We shall use some results of McFadden
(1981) to derive a representative agent model that yields the choice probabilities as the demand
functions in a continuous choice problem. We rewrite equation (1) as

uti =
yt

p
− vi

p
+ εti, i = 1, . . . , I, t = 1, . . . , T. y (C-1)

In equation (C-1) the subscript t refers to the t-th agent, yt is his total expenditure and p is
the price of other consumption expenditures. Note that adding yt

p
does not affect the choice

made by the agent. The only change in equation (1) is that we take the price of i relative to the
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price of other consumption. The representative agent has the following indirect utility and cost
function:

V̄ (ȳ, v, p) =
ȳ

p
+ E max

i=1,...,I

{
−vi

p
+ εi

}
,y (C-2)

C̄(u, v, p) = pu− E max
i=1,...,I

{−vi + pεi} ,y (C-3)

with ȳ the arithmetic average of the total expenditures. The expectation is taken over the
distribution of ε. Using similar arguments as McFadden (1981) we can show that equation (C-2)
and equation (C-3) are a proper indirect utility and cost function that correspond to a choice
problem in which ȳ is divided over I + 1 goods with prices v and p. Using Roy’s identity and
Shephard’s lemma we can derive the Marshallian and Hicksian demands which in this case
coincide. It is not difficult to see that11

∂C̄

∂v
(u, v, p) = P

(
v

p

)
,y (C-4)

and the Marshallian demand for the other consumption is

x̄(ȳ, v, p) =
ȳ − P

(
v
p

)′
v

p
.

In these expressions P is the I-vector of choice probabilities. The integrability conditions that
the demand functions (C-4) must satisfy are

∂Pi

∂vj
(v) =

∂Pj

∂vi
(v) (C-5)

S =

[
∂Pi

∂vj

]
≤ 0.y (C-6)

If we compare these conditions with conditions (C-1)–(C-5) above, it is seen that translation
invariance is not implied by equation (C-5) and equation (C-6). Moreover, equations (C-5) and
(C-6) yield weaker restrictions on the choice probabilities than the symmetry condition (C-4)
and the non-negativity condition (C-5) as the following example with the choice between two
alternatives (I = 2) demonstrates. The Slutsky condition (C-6) requires that the matrix




∂P1

∂v1

∂P1

∂v2
∂P2

∂v1

∂P2

∂v2


 (C-7)

is negative semi-definite. In particular, the diagonal elements must be non-positive. The non-
negativity condition (C-4) on the other hand requires that

∂P1

∂v2
≥ 0 and ∂P2

∂v1
≥ 0.

Since P1(v) + P2(v) = 1 and because of the symmetry condition (C-5) we have

∂P1

∂v1
= −∂P2

∂v1
= −∂P1

∂v2
=

∂P2

∂v2
≤ 0.y (C-8)

11Note that
∂

∂vj
max

i
{−vi + pεi} =

{−19 j = argmaxi{−vi + pεi}
09 j �= argmaxi{−vi + pεi} .
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Hence, the Daly–Zachary–Williams conditions imply that the matrix in equation (C-7) is nega-
tive semi-definite and symmetric, that the off-diagonal elements are non-negative, and that the
rows and columns of this matrix sum to 0. These conditions are stronger than the ones imposed
by the integrability conditions (C-5) and (C-6). We conclude that compatibility with utility
maximization by a representative agent yields weaker conditions on the choice probabilities
than compatibility with individual utility maximization.

D. Proof of Theorem 5

We begin by introducing some additional notation. By a change of variables as in corollary 3
we see that, if choices are made by stochastic utility maximization, choice probabilities can be
written as

Pi(v) =

∫
Bi(v)

h1(w)dw,

with
B1(v) =

{
w ∈ IR(I−1) | w ≤ v1 − v1ιI−1

}

Bi(v) =
{
w ∈ IR(I−1) | wi−1 ≥ vi − v1, wj−1 − wi−1 ≤ (vj − v1)+

−(vi − v1), i 	= j = 2, . . . , I} , i = 2, . . . I.
In this formulation, alternative 1 is chosen as the reference alternative. Each observation vt

induces a partition of IR(I−1) into I disjoint sets Bi(vt):

I⋃
i=1

Bi(vt) = IR
(I−1)

Bi(vt) ∩Bj(vt) = ∅, i 	= j.

For a given sample vt, t = 1, . . . , T , we define the sets C as the intersections:

Ci1i2···iT ≡ Bi1(v1) ∩Bi2(v2) ∩ . . . ∩BiT (vT ) ⊂ IR(I−1) (D-1)

for all (i1, i2, . . . , iT ) in the index set

J = {(i1, i2, . . . , iT ) | is = 1, . . . , I, s = 1, . . . , T} .
The sets Ci1i2···iT will be empty for many combinations of i1, i2, . . . , iT . For example, B1(v1) ⊂
B1(v2) implies that B1(v1)∩Bi(v2) = ∅ for i = 2, . . . , I. Furthermore, note that each set Bi(vt)
can be written as the union of sets C:

Bi(vt) =
⋃

Ji(vt)

Ci1i2···iT ,

where the index set Ji(vt) is given by

Ji(vt) = {(i1, i2, . . . , iT ) | it = i, is = 1, . . . , I, s = 1, . . . , T, s 	= t} .
From now on, we restrict ourselves to those sets C which are not empty, i.e. those belonging to

C ≡ {Ci1i2···iT | Ci1i2···iT 	= ∅, it = 1, . . . , I, t = 1, . . . , T} .
The corresponding index set is J∗, i.e.,

J∗ = {(i1, i2, . . . , iT ) ∈ J | Ci1i2···iT ∈ C} .
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The collection C is a partition of IR(I−1): the sets in C are disjoint and the union of all sets in C
is IR(I−1). Using this, we can rewrite each observed choice probability as

Pi(vt) =

∫
Bi(vt)

h1(w)dw =
∑

(i1,i2,...,iT )∈J∗
i
(vt)

∫
Ci1i2···iT

h1(w)dw,y (D-2)

where J∗
i (vt) = {(i1, i2, . . . , iT ) ∈ Ji(vt) | Ci1i2···iT ∈ C}. Finally we define

Ai1i2···iT =

∫
Ci1i2···iT

h1(w)dw.y (D-3)

Now we are in a position to proof Theorem 5.

Proof. (Necessity) It is clear from equation (D-2) and equation (D-3) that all A’s will be non-
negative if a non-negative generating density function h1 exists.
(Sufficiency) Suppose the set of equations (13) has a non-negative solution. It follows from
equation (D-3) that we can construct a non-negative density h1(w) which generates the observed
choice probabilities. Take for (i1, i2, . . . , iT ) ∈ J∗ a non-negative function gi1i2···iT , such that:∫

Ci1i2···iT

gi1i2···iT (w)dw = Ai1i2···iT .

One can choose

gi1i2···iT (w) = Ai1i2···iT

∏I−1

j=1
φ(wj)∫

Ci1i2···iT

∏I−1

j=1
φ(wj)dw

, w ∈ Ci1i2···iT ,y (D-4)

with φ(·) the standard normal density function. We define h∗
1 by

h∗
1(w) = gi1i2···iT (w), w ∈ Ci1i2···iT , (i1, i2, . . . , iT ) ∈ J∗.

It is clear that h∗
1 is non-negative and that for i = 1, . . . , I, t = 1, . . . , T :

Pi(vt) =

∫
Bi(vt)

h∗
1(w)dw.

If the density of ε is
h∗

1(ε2 − ε1, . . . , εI − ε1)φ(ε1)

then the choice probabilities can be written as in equation (9). From equation (D-4) it follows
that we can choose the distribution of ε to be absolutely continuous and non-defective.



28W Ruud H. Koning and Geert Ridder

E. Compatibility on a Finite Set But Not on an Interval

In this section we apply the necessary and sufficient conditions of theorem 5 to choice proba-
bilities that are generated by an NMNL model and we show that choice probabilities may be
compatible on a finite set but not on an interval. To be specific the choice probabilities at the
observed utility components vt, t = 1, . . . , T are given by the nested multinomial logit (NMNL)
model of McFadden (1978) (see also Maddala (1983), pp. 67-69). We consider an NMNL model
with three alternatives (I = 3). The joint distribution of the random components of the utilities
is

F (ε) = exp
{
− [exp(−ε1/θ) + exp(−ε2/θ)]

θ − exp(−ε3)
}
.

If we take the first alternative as the reference alternative, the distribution function of
w ≡ (ε2 − ε1, ε3 − ε1)

′ becomes

H1(w) =
(1 + exp(−w2/θ))

(θ−1)

exp(−w1) + (1 + exp(−w2/θ))
θ
.y (E-1)

The corresponding density function is

h1(w1, w2) = exp(−w2) exp(−w1/θ)
(1 + exp(−w1))

(θ−2)

exp(−w2) + (1 + exp(−w1/θ))
θ

×
{

2 (1 + exp(−w1/θ))
θ

exp(−w2) + (1 + exp(−w1/θ))
θ
− θ − 1

θ

}
1

exp(−w2) + (1 + exp(−w1/θ))
θ
.

(cf. Börsch-Supan (1990), equations (13) and (14) which are not correct). This density is signed
by the term in braces. The first term approaches 0 if w1 → ∞ and w2 → −∞, so that the density
is only nonnegative for for all w ∈ IR2 if and only if − θ−1

θ
≥ 0, i.e. if and only if 0 < θ ≤ 1. In

case θ is not in this interval, there is a set of positive measure where the function h1(w1, w2) is
negative.
If θ > 1, there exists a set of positive measure where h1(w) is negative. Hence, the choice

probabilities do not satisfy the non-negativity condition in equation (C-4), and therefore they
are not globally compatible with stochastic utility maximization. This is illustrated in figure E-1.
There, and in the sequel we take θ = 2. Now suppose we have a sample of three points (T = 3):
z1 = (−1, 1), z2 = (2, 2) and z3 = (4,−2). The function h1(w) is negative in z3 = (4,−2).
Using equation (E-1), we can calculate the choice probabilities as

P (z1) = (0.36, 0.59, 0.05)
′

P (z2) = (0.68, 0.25, 0.07)
′

P (z3) = (0.13, 0.02, 0.85)
′.

After inspection of these choice probabilities (and figure E-1), it is seen that they satisfy the
necessary condition of corollary 4. Moreover, using the notation of the preceding section, we see
that the choice probabilities also satisfy the necessary and sufficient condition of theorem 5: a
non-negative solution for the A’s is A111 = 0.13, A113 = 0.23, A211 = 0, A213 = 0.32, A221 =
0, A222 = 0.02, A223 = 0.23, A233 = 0.02, A313 = 0 and A333 = 0.05. Hence we conclude that the
observations are compatible with stochastic utility maximization, even though h1(w) is negative
in z3. Note that by theorem 4 the choice probabilities are not locally compatible on any interval
that contains z1, z2, and z3.
Now suppose we had another observation, say z4 = (3,−3). This observation has choice

probabilities (0.06, 0.01, 0.93)′ according to the NMNL model. It is clear that (see figure E-1)
B2(v3) ⊂ B2(v4), but P2(v3) > P2(v4), violating the necessary condition of corollary 4. This is,
of course, due to the negativity of the density function in B2(v4)\B2(v3). It is no longer possible
to find a density function h1(w) which could have generated the observed choice probabilities.
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✲

❄

✛
w1 = ε2 − ε1

w2 = ε3 − ε1
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Figure E-1. Choice probabilities of the nested multinomial logit model


