
Evolutionary Bargaining with Cooperative Investments

Herbert Dawid and W. Bentley MacLeod

USC Center for Law, Economics & Organization
 Research Paper No. C02-19

CENTER FOR LAW, ECONOMICS
AND ORGANIZATION

RESEARCH PAPER SERIES

Sponsored by the John M. Olin Foundation

University of Southern California Law School
Los Angeles, CA 90089-0071

This paper can be downloaded without charge from the Social Science Research Network
electronic library at http://papers.ssrn.com/abstract_id=xxxxxx



Evolutionary Bargaining with Cooperative Investments∗

Herbert Dawid W. Bentley MacLeod

Department of Economics

University of Southern California

Los Angeles CA 90089-0253

January 31, 2002

Abstract

This paper explores the set of stochastically stable equilibria in a model in which individuals first

decide to make a high or low investment, and then are matched to play a Nash demand game. If an

agreement is not reached, then they are re-matched in the next period, and obtain a payoff discounted by

δ.We identify a condition under which stochastically stable bargaining conventions exist and find, that the

stochastically stable division rule is independent of the long run investment strategy. In these conventions

the potential to trade in subsequent periods always has an effect on the bargain, and the market acts

more like a threat point, than an outside option. If investments are substitutes stochastically stable

bargaining conventions imply larger investment incentives than the Nash bargaining solution whereas

the opposite is true if investments are complements. Finally, if it is not efficient for trade to occur as

a result of the outside option, and investments are complements, then no bargaining convention can

develop, and investment levels are typically inefficient.

∗We would like to thank Jack Robles for helpful comments and the National Science Foundation for financial support under

grant SES 0095606.
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1 Introduction

Efficient exchange often entails the use of relationship specific investments, but in the absence of binding

contracts, the ex post negotiation of the terms of trade can result in the sharing of the gains from investment

between the two parties, leading to the well know problem of holdup (Grout (1984) and Grossman and Hart

(1986)). In the case of one-sided relationship specific investment, followed by the play of a Nash demand

game to determine the terms of trade Tröger (2000) and Ellingsen and Robles (2000) find that under the

appropriate conditions stochastically stable equilibria entail efficient investment. These results are quite

surprising because they illustrate a situation in which learning, as modeled by the criteria of stochastic

stability, leads to behavior that is sensitive to sunk costs. The purpose of this paper is to extend this work

in two directions. First we allow for investment by both parties, and, second, individuals that do not trade

can at a cost rematch and attempt trade with a new party in the subsequent period.

In our model whenever investment by both parties is efficient, there are a large number of efficient

subgame perfect equilibrium for the stage game. Using the methodology of Young (1993) and Kandori,

Mailath, and Rob (1993) we explore the set of stochastically stable equilibria in a model in which individuals

first decide to make a high or low investment, and then are matched to play a Nash demand game. If an

agreement is not reached they are re-matched in the next period, and then obtain a payoff discounted by

δ. We find, in contrast to Tröger (2000) and Ellingsen and Robles (2000), that in the case of two-sided

investment the stochastically stable division rule in general does not provide efficient investment incentives,

and hence holdup is still a problem. The potential to trade in subsequent periods always has an effect on

the bargain for all δ > 0, and therefore the market acts more like a threat point, than an outside option in

the sense of Binmore, Rubinstein, and Wolinsky (1986). It turns out that for the allocation of surplus in the

stochastically stable convention the value of the outside options in environments of low investment is crucial

even if the induced long run outcome is full investment. This implies that when investments are substitutes

then the set of parameter values yielding high investment is larger than in the standard holdup problem

where the allocation follows the Nash bargaining solution. Conversely, when investments are complements,

the criterion of stochastic stability makes the holdup problem worse. If it is not efficient for trade to occur as

a result of the outside option, and investments are complements, then no bargaining convention can develop,

and investment levels are typically inefficient.

The agenda of the paper is as follows. The next section introduces the basic model, followed by an

illustration of the potential for efficient bargaining norms in this model. Sections 4 and 5 introduce the

formal stochastic learning model, and present a preliminary analysis of the stochastically stable sets. Section

6 considers the case of substitutes, where the marginal return from the first investment is greater than the

second investment, while section 7 presents our results for complementary investments. The paper concludes

with a discussion of the results and their relationship to the literature.
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2 The Model

We are interested in the kind of bargaining and investment conventions which are developed endogenously

in a population of adaptive agents. To examine this, we use an evolutionary bargaining model similar to

Young (1993) as extended to incorporate investment by Tröger (2000) and Ellingsen and Robles (2000). It is

assumed that agents use a random sample of the population of players to build beliefs about the investment

and bargaining behavior of the other individuals. With a large probability they then choose the optimal

strategy given their beliefs.

Consider a single population of identical agents who are repeatedly matched randomly in pairs to engage

in joint production (or in a joint project). Every agent can make an investment, either high (H) or low

(L), before entering the population that influences his type, and accordingly the joint surplus of the project.

This investment can be thought of as human capital, such as the acquisition of special skills needed for a

project, though the framework is sufficiently general that any type of project specific investment might be

considered. Before partners start joint production they bargain over the allocation of the joint surplus. If

the bargaining does not lead to an agreement they split without carrying out the project and look for new

partners. The effect of an investment stays intact as long as the agent has not carried out the project, it is

however assumed that the investment is project specific and creates no additional revenue after the project

has been carried out. The degree of project specificity is parameterized by a discount factor δ ∈ [0, δ̄], such

that the value of trade t periods after the initial investment is δtU, where U is the agents share of the gains

from trade. When δ = 0 the model corresponds to purely relationship specific investment.

The sequence of decisions facing an individual are:

1. The agent, i, decides about her investment level Ii ∈ {h, l} , where the cost of investment is

c (I) =

{
c, if I = h,

0, if I = l.

After the investment has been made the type T i ∈ {H,L} of the agent is determined. It is assumed

that the probability of being a high type after having invested I is pI , where ph > pl.

2. The agent is randomly matched with some partner and both observe each other’s type. The types

determine the size of the surplus, STiTj
, which satisfies SHH ≥ SLH = SHL ≥ SLL > 0.

3. Individual i makes a demand conditional upon her type and that of her partner j, denoted by xTiTj
∈

XTiTj
(k) =

{
0, αTiTj

, 2αTiTj
, ..., kαTiTj

}
, αTiTj

= STiTj
/k, k is some large even number.

4. The payoff to individual i in this period is given by the rules of the Nash demand game:

U i =

{
xi
TiTj

, if xi
TiTj

+ xj
TjTi

≤ SIiIj

0, if xi
TiTj

+ xj
TjTi

> SIiIj

}
− c

(
Ii
)

and similarly for player j. Agents are assumed to be risk neutral.

5. If agent i has traded in this period she leaves the population and is replaced by another individual.

If there was no trade the individual stays in the population and goes again through steps 2 - 5 in the

following period where future payoffs are discounted by a factor δ per period.
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Throughout the analysis SHH and SLL are assumed fixed, while the degree of complementarity in in-

vestment, SLH , and the cost of investment, c, are parameters that determine the nature of the investment

problem. Furthermore, we assume that the probability that the type differs from the investment level is

symmetric and small, namely: 1 − ph = pl = λ for some small positive λ. This latter assumption plays

an important role in the analysis because it ensures that even if all individuals carry out high investment,

there is a strictly positive probability of having low types in the population. Hence each period there is

the potential for trade between H and L types. As we shall see, the existence of such trades is a necessary

condition for the evolution of a bargaining convention.

From the analysis of Young (1993), it is known that the equal split is stochastically stable when all

individuals are the same. Therefore, to simplify the analysis it is assumed that when two high types meet

or two low types meet they split the gains from trade equally if they trade, i.e. xi
HH = SHH

2 , xi
LL = SLL

2 ∀i.

For most of the current analysis it shall be assumed that the discount factor δ is sufficiently small that it

is always efficient to trade, regardless of the type of your partner, rather than wait. Hence the option to

wait will act as a constraint on the current trade, an assumption that is discussed in more detail in the next

section.

These assumptions greatly simplify the strategy space. When a player first enters the game she chooses

I ∈ {h, l}, after which point she learns her type T ∈ {H,L} . Given her type, each period she needs to

formulate only her demand when faced with an partner of a different type, since she adopts the equal

split rule when faced with a partner of the same type. Formally, a strategy of the stage game is given by

(I, xHL, xLH) ∈ {h, l} × X(k)2, where X (k) = XLH (k) = XHL (k), but in every period other then the

period she enters an agent only has to determine one action, namely xHL if she is of type H or xLH if she

is of type L. In what follows we will refer to the pair (xHL, xLH) as the bargaining strategy of an agent.

3 Equilibrium Analysis

Our goal is to understand the structure of the stochastically stable equilibria as a function of the cost of

investment, c, the degree of investment complementarity, SLH , and the degree of investment specificity, mod-

eled by δ. The purpose of this section is to characterize the uniform subgame perfect equilibria in stationary

strategies of the population game1 that result in high investment. It will turn out that if stochastically stable

equilibria exist they are indeed in this class of equilibria.

Note that in the Nash demand game any strategy profile (xHL, xLH) such that xLH + xHL = SLH is

a Nash equilibrium. By a bargaining convention we mean a situation where all individuals have identical

bargaining strategies of the form (SLH − x̂LH , x̂LH) for some x̂LH ∈ [0, SLH ].

Since the focus of this paper lies on the bargaining behavior in matches of different types we will make

assumptions that guarantee that equal split trades always occur between equal types. Given the results of

Young (1993) we only have to be concerned about the question whether equal types want to trade at all

or rather wait for a different type. The maximal payoff a low type can get in the next period is SLH and

1This means that we consider scenarios where all individuals use identical strategies of the stage game every period and

these strategies are constant over time.
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therefore SLL

2 > δSLH is sufficient to guarantee trade between low types. For high types we must have
SHH

2 > δSLH which clearly is a weaker condition. Hence we will assume throughout the paper that

(1) δ <
SLL

2SLH
.

Considering High-Low pairings we realize that for relatively high discount factors and strong comple-

mentarity between investments, even if a bargaining convention exists, one of the two partners would rather

wait for a partner of identical type than to trade according to the bargaining convention. Given that in a

High-Low pairing the high type expects a low bid of x̂LH , the low type expects a high bid of SLH − x̂LH

and given that both partners believe that they will meet an identical type in the following period, they will

be willing to trade if

SLH − x̂LH > δSHH/2,

x̂LH > δSLL/2.

The first condition ensures that the high type prefers trading with a low type, rather than waiting one

period and trading with a high type. The second condition is the corresponding requirement for the low

type. Adding these inequalities together implies the following necessary condition for trade to occur for HL

matches:

(2)
2SLH

SLL + SHH
> δ.

Put differently, (2) implies that there exists a bargaining convention xLH such that individuals always trade

in High-Low matchings no matter what their beliefs about the distribution of types in the population are.

Notice that condition (2) can not be binding, if investments are substitutes. Investments are substitutes if

the marginal return from the first investment is greater than from the second investment:

SLH − SLL > SHH − SLH ,
2SLH

SLL + SHH
> 1.

Conversely, investments are complements if the marginal return from the second investment is larger:

SLH − SLL < SHH − SLH ,
SLL + SHH

2SLH
> 1.

In this case, when δ is large it may be more efficient for HL pairs not to trade, and instead to delay trade

until they meet a partner of the same type. For further reference, the requirement that there is a bargaining

norm that implies trade in HL pairings regardless of the individual beliefs about the type distribution is

summarized as the trade condition:

Definition 1 The discount rate δ satisfies the trade condition if δ < 2SLH

SLL+SHH
.

It shall be shown below that this is a necessary condition for the existence of a stochastically stable

bargaining convention when investments are complements. By a convention we mean a pair {I, x̂LH} , with
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the interpretation that each agent selects the investment I upon entering the market, the low type demands

x̂LH , while the high type demands x̂HL = SLH− x̂LH . To economize on writing out the full set of strategies

and payoffs, the notion of a stable convention is be defined as follows.

Definition 2 A convention {H, x̂LH} is stable if:

1. (1− λ) (SHH/2− x̂LH) + λ
(
(SLH − x̂LH)− SLL

2

)
≥ c/ (1− 2λ) ,

2. SLH − x̂LH ≥ δ (1−λ)
(1−δλ)SHH/2

3. x̂LH ≥ δ λ
(1−δ(1−λ))SLL/2.

The expected payoff of a person making a high investment assuming that trade is immediate and she

meets a high type is (1− λ)SHH/2 + λx̂LH , while the result of no investment is λSHH/2 + (1− λ) x̂LH .

If she meets a low type, the expected payoffs are (1 − λ)(SLH − x̂LH) + λSLL/2 if she invests high and

λ(SLH − x̂LH) + (1− λ)SLL/2 if she invests low. Given the equilibrium fraction of high types in the market

in any period is (1−λ) a simple calculation yields condition 1. The second condition is the requirement that

a person who is a high type prefers to trade with a low type, rather than wait until meeting a high type. The

final condition requires the low type to prefer trading with a high type, rather then waiting until meeting a

low type. This places a lower bound on x̂LH . It is a straightforward exercise to show that for every stable

convention there is a subgame perfect Nash equilibrium yielding this outcome for the trading game outlined

above. A stable convention, {L, x̂LH} , for low investment is defined in a similar fashion.

For much of the analysis the parameter λ is positive, but small. In the limit, when λ = 0 then a sufficient

condition for the existence of a stable convention with high investment is that it is efficient.

Proposition 1 Suppose it is strictly efficient for all agents to select high investment, SHH−2c > max {SLH − c, SLL} ,

then for all δ satisfying the trade condition a bargaining convention, x̂LH , exists such that {H, x̂LH} is stable

for λ sufficiently small.

This result demonstrates that when noise is small it is possible to support as an equilibrium high invest-

ment whenever it is efficient to do so. In contrast, the literature on the holdup problem assumes that the

ex post division of the surplus is determined by the Nash bargaining solution, which in some cases induces

sub-efficient investment. However the division implied by the Nash bargaining solution is only one among

many subgame perfect equilibria of the game. In general, one is able to conclude that for this game there

are a large number of subgame perfect equilibria, many of which induce efficient investment. The questions

then is whether or not the efficient equilibria are stochastically stable.

4 Learning Dynamics

Consider now the kind of bargaining and investment conventions that are developed endogenously in a

population of adaptive agents. Following Young (1993) and Tröger (2000) it is assumed that agents sample

the previous periods trades to build an empirical distribution regarding the investment and bargaining
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behavior of the other individuals in the population. Regarding the value of the outside option, agents believe

that the distribution of low and high types in the economy is time stationary, a hypothesis that is consistent

with assumption that agents base current action on past observations of the frequency of high types. It is

also assumed that with a small probability they make mistakes in executing their optimal strategy given

their beliefs regarding the play of the game described in section 2.

Our model consists of a single population of individuals who choose investment from {h, l} upon entering

the population and afterwards every period have to choose their action from the space X (k). This choice

is based on beliefs about distribution of types and bargaining behavior of the other individuals in the

population. Each period every individual independently takes a random sample of m individuals from the

previous period. Let p̂it ∈ P = {0, 1/m, 2/m, ..., 1} denote the fraction of individuals in this sample with

Ti,t−1 = H. Since the equal split occurs in all HH or LL pairings, only those observations where individuals

select either xHL or xLH are useful for the estimation of bargaining behavior. These observations are used

to update ones memory which is then used to estimate bargaining behavior of high and low types. The

memory consists of at most m data points at any time, where it is assumed that the oldest data is dropped

as new data is added. Observations in the memory are used to estimate empirical distribution functions

F̂HL (·) and F̂LH (·) of bids of high types when matched with low types and vice versa. These distribution

functions are taken from the finite set:

F = {F : X (k) → {0, 1/m, 2/m, ..., 1} |F (x) is increasing, F (SLH) = 1} .

It will turn out to be convenient to denote by P(z) the distribution function of point expectations z,

i.e. P(z)(x) = 0 for x < z and P (z)(x) = 1 for x ≥ z. When an agent leaves the market, her beliefs

are passed on to the new agent entering the market to replace this agent. Beliefs in the first period are

arbitrary.

The set of all possible beliefs of an agent is then given by B = P × F2, where p̂ (β) and F̂HL (xHL, β)

denote respectively the proportion of high types and probability that xHL or less is demanded by a high

type given the belief β ∈ B. The expected payoff of an agent with type H or L choosing a ∈ X (k) under

beliefs β ∈ B, is given recursively by:

UL (a, β) = p̂ (β)
(
F̂HL (SLH − a, β)a+ δ

(
1− F̂HL (SLH − a, β)

)
UL (a, β)

)
+ (1− p̂ (β))SLL/2,

UH (a, β) = p̂ (β)SHH/2 + (1− p̂ (β))
(
F̂LH (SLH − a, β)a+ δ

(
1− F̂LH (SLH − a, β)

)
UH (a, β)

)
.

The time-line of the game with adaptive dynamics is summarized as follows:

1. At the beginning of the game beliefs are random, but when an individual leaves she is replaced by

another agent with the same beliefs, say β.

2. Given beliefs β ∈ B the agent chooses to invest if:

max
(xLH,xHL)∈X(k)2

(1− λ)UH (xHL, β)+λUL (xLH , β)−c ≥ max
(xLH,xHL)∈X(k)2

(1− λ)UL (xLH , β)+λUH (xHL, β) .

Then she draws her type, which is equal to her investment with probability 1− λ.
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Each period the following steps are repeated until exit occurs:

1. At the beginning of every period t the individual randomly samples the types of m individuals from

the previous period. This is used to update beliefs bit ∈ B.

2. With probability ε > 0 the individual selects an action randomly from X (k) , under the uniform

distribution. This noise process is i.i.d. between individuals and periods. With probability 1 − ε the

individual chooses ait ∈ X (k) to maximize UT i

(
ait, b

i
t

)
, given her type T i ∈ {L,H} and beliefs bit ∈ B.

When indifferent over demands she chooses the smallest demand. The agent’s strategy is uniquely

defined by her beliefs. Hence, we write ait = α
(
T i, bit

)
.

3. Agents are randomly paired, and their payoffs are determined according to the actions chosen at stage

2.

Given that an agent’s action is completely characterized by her beliefs bit ∈ B, and type T i ∈ {H,L}2 ,

the state at time t is characterized by a distribution over beliefs and types, and the state space is therefore

finite and given by:

(3) S = {s ∈ [0, 1]|C||
∑
c∈C

sc = 1, nsc ∈ IN0 ∀c ∈ C},

where C = {H,L} ×B. The learning process described above defines a time homogeneous Markov process

{σt}
∞
t=0 on the state space S. Although, even for ε > 0, the transition matrix is not positive, the following

lemma shows that the process is irreducible and aperiodic.

Lemma 1 For ε > 0 the Markov process {σt}∞t=0 as defined above is irreducible and aperiodic.

Hence, for ε > 0 there exists a unique limit distribution π∗(ε) over S, where π∗
s(ε) denotes the probability

of state s. Following a standard approach in evolutionary game theory we consider the limit distribution

for small values of ε and in particular characterize the states whose weight in the limit distribution stays

positive as the mutation probability ε goes to 0. Such states are called stochastically stable:

Definition 3 A state s ∈ S is called stochastically stable if limε→0 π
∗
s(ε) > 0. We say that a set is stochas-

tically stable if all his elements are stochastically stable.

The reason why this concept is of interest is that for small ε the process spends almost all the time in

stochastically stable sets. Hence, characterizing the stochastically stable outcome means characterizing the

long run properties of the evolutionary process. To identify stochastically stable states it is necessary to first

identify the minimal absorbing sets of the process for ε = 0. It is well known that the set of stochastically

stable states is a subset of the union of these so called limit sets. Formally, a limit set is defined as follows:

Definition 4 A set Ω ⊆ S is called a limit set of the process if for ε = 0 the following statements hold:

∀s ∈ Ω IP(σt+1 ∈ Ω|σt = s) = 1

∀s, s̃ ∈ Ω ∃z > 0 s.t. IP(σt+z = s̃|σt = s) > 0.

2We look at the process after all incoming agents have made their investment decisions, but before they are paired and

therefore the type of all agents is determined.
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In the following section we will characterize the stochastically stable sets and discuss the implied invest-

ment and bargaining conventions. This will allow us to highlight the different implications for investment

such an evolutionary perspective has compared to assuming that the Nash bargaining solution is used.

5 Stochastically Stable Conventions

The question we address is the emergence of a unique, efficient and stable bargaining convention in which

all individuals follow the same investment strategy, and have the same expectations regarding how to divide

the gains from trade. This is formally defined by:

Definition 5 A state s induces the bargaining convention xLH if all individuals have beliefs β ∈ B that

place probability one on the demand by their partner being xLH or SLH −xLH , depending upon their type in

HL matches.3

Therefore, we shall say that a bargaining convention does not exist at a state s if there is heterogeneity

in the beliefs of the agents regarding the terms of trade between high and low types. Let us now consider

the constraints that the outside options place upon feasible bargaining conventions.

A necessary condition for a convention is that the terms of trade between high and low types result in

outcomes that are better than their respective the outside options. Consider an agent with beliefs β then,

under the assumption of stationary beliefs, by simply waiting for a partner with the same type she can

guarantee an expected payoff of p̂(β)
1−δ(1−p̂(β))

SHH

2 if she is of type H and 1−p̂(β)
1−δp̂(β)

SLL

2 if she is of type L. We

say that a bargaining convention is compatible with p̂ and δ if both parties are better off than their respective

expected outside option, that is xLH ∈ [xLH(p̂), x̄LH(p̂)], where xLH(p̂) ∈ X(k) such that

xLH(p̂)− α <
δ(1− p̂)

1− δp̂

SLL

2
≤ xLH(p̂)

and x̄LH(p̂) ∈ X such that

x̄LH(p̂) ≤ SLH −
δp̂

1− δ(1− p̂)

SHH

2
< x̄LH(p̂) + α,

where α = αLH = αHL is the minimum unit of account for dividing the surplus, as defined in the game

form of section 2. Denote the set of all bargaining conventions which are compatible with all p̂ ∈ [0, 1] for

a certain discount factor by C(δ) = [xLH(0), x̄LH(1)]. Notice, that C(δ) �= ∅ for sufficiently small α if and

only if δ < 2SLH

SLL+SHH
holds. Hence, the trade condition is a sufficient condition for C(δ) �= ∅, and is also a

necessary condition in the case of complementary investments.

Let us now characterize the limit sets in this framework. Once a bargaining convention xLH , which is

compatible with δ, is reached, in the absence of mutations all low types always demand xLH against high

types and high types always demand SLH − xLH against low types. Hence beliefs can never change once

such a state has been reached. If beliefs are heterogeneous there is always a positive probability that all

agents observe identical samples and beliefs become homogeneous and compatible. However, also after a

3Formally F̂HL(β) = P(SLH − xLH), and F̂LH(β) = P(xLH)).

9



bargaining convention has been reached, the distribution of agent types may change between two periods,

even if the investment behavior is constant. The randomness of the outcome from investment implies that all

distributions of H and L types are possible. Hence if there is a bargaining convention that is not compatible

with all p ∈ P, eventually it will be disrupted. This suggests that the limit sets correspond to conventions

in C(δ), when it is not empty.

If the trade condition does not hold then C(δ) = ∅, and the outside option of waiting for an equal type

always becomes binding for some p̂. In this case bids never settle down at a compatible convention and

there occur fluctuations driven by the fluctuations in the p̂i. In the following lemma we show that in such

a scenario the set of possible bids is given by all demands which lie just above the outside option for some

p̂ ∈ P and the best responses to that. The set of all these bids is given by

BLH(δ) = {xLH ∈ X|∃p ∈ P s.t. xLH = xLH(p) or ∃p ∈ P s.t. xLH = x̄LH(p)}

BHL(δ) = {xHL ∈ X|∃p ∈ P s.t. xHL = SLH − x̄LH(p)

or ∃p ∈ P s.t. xHL = SLH − xLH(p)} .

The larger m is the larger these sets are and for sufficiently large m we simply have BHL(δ) = X ∩[
SLH − δSLL

2 , δSHH

2

]
and BLH = X ∩

[
SLH − δSHH

2 , δSLL

2

]
.

Lemma 2 Characterization of the limit sets for sufficiently large k:

a) Suppose the trade condition holds then for each xLH ∈ C(δ) there exists a limit set Ω(xLH) consisting of

all s ∈ S such that sζ > 0 only if ζ = (T, β) for some some T ∈ {H,L} and some β such that F̂HL(·, β) =

P(SLH − xLH) and F̂LH(·, β) = P(xLH).

b) Suppose investments are complements and the trade condition does not hold, then there exists a single

limit set L. For all states s ∈ L we have sζ > 0 only if ζ = (T, β) for some T ∈ {H,L} and some β such

that supp(F̂HL(·, β)) ∈ BHL(δ), supp(F̂LH(·, β)) ∈ BLH(δ).

Hence, as long as δ is not too large or investments are not too complementary (SLH is small) , in the

long run the process generates a bargaining convention which is followed by all individuals in the population.

The bargaining strategy is uniform across the population, there is no disagreement and bargaining is always

efficient. It should also be pointed out that conventions only fail to exist for large δ if investments are

complements (SLH < 1
2(SHH + SLL)). In that case the trade condition may not be satisfied for some

δ ∈ [0, 1), and hence agents may choose not to trade in HL pairings, making it impossible for a convention

to evolve in this case.

The analysis in the subsequent sections uses the Radius - Modified Coradius criterion, recently developed

in Ellison (2000), to provide sufficient conditions for a limit set to be stochastically stable. A proof using

the Freidlin-Wentzell Freidlin and Wentzell (1984) technique — which has been used in the analysis of most

models of a similar kind — would also be feasible but slightly more complicated. The arguments used to

determine the stochastically stable convention are similar to those used in Young (1993) but it turns out

that the fact that individuals have the option to wait for a different partner has significant and interesting

implications for the long run bargaining behavior.
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6 The Case of Substitutes

Consider first the case in which investments are substitutes, namely SLH −SLL ≥ SHH −SLH . In this case,

the gains from having one person invest are greater than having a second person invest.

The fact that individuals cannot perfectly determine the productivity of their investments has two im-

portant implications. First, every period there is a strictly positive probability of both types existing in the

market, and thus there are always with positive probability HL trades occurring in the market which can

be used to update the believes of individuals. Second, regardless of the investment decisions of individuals,

any distribution of types has strictly positive probability. On the other hand, transitions between bargaining

conventions have to be triggered by (in general multiple simultaneous) mutations. Hence, for small mutation

probabilities bargaining conventions adjust more slowly, and are more stable than the realized distribution

of types. This implies that the stochastically stable bargaining convention is independent of the long run

investment behavior and therefore also independent of investment costs c. The next proposition provides a

rigorous proof of this fact and derives the properties of the bargaining convention that arises in the long run.

Proposition 2 For sufficiently large m, n the limit of the stochastically stable sets of the process {σt} for

k → ∞ can be characterized in the case of substitutes as follows:

(a) When SHH − δ
2(SHH − SLL) ≥ SLH ≥ (SHH + SLL) /2, every stochastically stable state induces the

bargaining convention

x̂s
LH =

SLH

2
−

δ

2(2− δ)
(SLH − SLL).

(b) When SHH ≥ SLH ≥ SHH − δ
2(SHH − SLL) every stochastically stable state induces the bargaining

convention

x̂s
LH =

SLH

2
−

δ

4
(SHH − SLL).

We will refer to the bargaining convention induced by all stochastically stable states as the stochastically

stable bargaining convention. In the absence of outside options (δ = 0) the equal split rule is the unique,

stochastically stable bargaining convention, regardless of the investment levels. Possibly the more surprising

result is the effect of the outside options on the bargaining convention. Notice, that in this model the outside

option is introduced only as a constraint on the set of possible bargaining agreements, and hence one might

expect the outside option principle to apply (see Binmore, Rubinstein, and Wolinsky (1986)). In that case

if xLH > δSLL/2 and SLH − xLH > δSHH/2, then xLH should not depend on either SHH or SLL, yet we

find that that for all δ > 0 the stochastically stable bargaining convention depends upon at least one of the

outside options, and that the low types share is always strictly increasing in SLL, a result that is consistent

with Binmore, Proulx, and Samuelson (1995) who report results from a bargaining game with drift.

Though the outside option affects the outcome of bargains, the level of long run investment does not.

This greatly simplifies the analysis of investment behavior in the long run. We can determine investment

behavior as a function of the bargaining convention and then insert the stochastically stable bargaining

11



convention. For a given bargaining convention x̂LH investment is optimal iff

(1− λ)(p̂
SHH

2
+ (1− p̂)(SLH − x̂LH) + λ(p̂xLH + (1− p̂)

SLL

2
)− c

≥ (1− λ)(p̂x̂LH + (1− p̂)
SLL

2
) + λ(p̂

SHH

2
+ (1− p̂)(SLH − x̂LH)).

Taking into account that (SHH +SLL/2−SLH < 0 this gives the following condition for high investment to

be optimal:

(4) p̂ ≤ p∗(x̂LH ;λ) :=
SLH − x̂LH − SLL/2− c/(1− 2λ)

SLH − SHH/2− SLL/2
.

To analyze the dynamics of investment for a given bargaining convention we consider the evolution

of type distributions over time. Given a current distribution of types the distribution of types in the

following period in general depends on the outcome of the stochastic sampling procedure for all agents,

which gives the beliefs p̂(bit) and therefore influences the investment decisions, and the actual realization of

types given the investment decision. This can be described by a Markov process {σ̃t}
∞
t=0 on the state space

S̃ = {0, 1/n, 2/n, . . . , 1}. For λ > 0 the process is irreducible and aperiodic. The unique limit distribution is

denoted by π̃∗(λ). The following lemma characterizes the limit distribution for small values of λ.

Lemma 3 When investments are substitutes (SLH > 1
2(SHH + SLL)), then given a bargaining convention

x̂LH , the long run distribution of types for sufficiently small λ can be characterized as follows:

(a) p∗(x̂LH ; 0) ≤ 0: no individual ever invests and limλ→0 π̃
∗
0(λ) = 1.

(b) p∗(x̂LH ; 0) > 1: all individuals always invest and limλ→0 π̃
∗
1(λ) = 1.

(c) p∗(x̂LH ; 0) ∈ (0, 1): limλ→0 π̃
∗
1(λ) = limλ→0 π̃

∗
0(λ) = 0.5.

In case (a) we say that x̂LH induces a no-investment convention, in (b) x̂LH induces a full investment

convention, and in case (c) we say that x̂LH induces cyclical investment. By cyclical investment we mean

that in one period everybody invests, and in the next period nobody invests. What is happening is that

when all individuals invest, it is optimal not to invest, and verso. Note that for substitutes in cases where

p∗(x̂LH ; 0) > 1 the action H is dominant at the investment stage for small λ and all heterogeneity in types

is created by deviations of the actual type from investment. Therefore, it is easy to see that a bargaining

convention x̂LH induces an investment convention if and only if there is a λ∗ > 0 such that the convention

{H, x̂LH} is stable for all λ < λ∗. It should also be pointed out here that even if we assume that λ is small it

is still assumed to be of an order of magnitude larger than the mutation probability ε which means that the

transition between bargaining conventions is always assumed to be much slower than the transition between

investment patterns. Using this result it is straight forward to describe the investment behavior which is

induced by the stochastically stable bargaining conventions. Inserting the stochastically stable bargaining

convention x̂s
LH into p∗ and applying lemma 3 gives the following proposition.
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Proposition 3 Assume that m,n and k are sufficiently large.

(a) For 1
2(SHH+SLL) < SLH ≤ SHH− δ

2(SHH−SLL) the stochastically stable bargaining convention induces

full-investment for c < c1, no-investment for c > c2 and cyclical investment for c ∈ [c1, c2], where

c1 = 1
2(2−δ) (δ(SLH − SLL) + (2− δ)(SHH − SLH))

c2 = 1
2−δ (SLH − SLL).

(b) For SHH − δ
2(SHH − SLL) < SLH ≤ SHH the stochastically stable bargaining convention induces full-

investment for c < c3 and cyclical investment for c ≥ c3, where

c3 =
1

4
(δ(SHH − SLL) + 2(SHH − SLH)).

Notice that when δ = 0, then c1 = (SHH − SLH) /2, but in this case of substitutes it is efficient for both

parties to invest whenever c < (SHH − SLH) . Therefore we obtain under-investment in some cases.

In case (a), the gain from investing at the bargaining convention is:

SHH/2− xLH =
(SHH − SLH)

2
+

δ

2 (2− δ)
(SLH − SLL) ,

≥
(SHH − SLH)

2
.

Therefore, the outside option always increases the gains from investing, regardless of whether it is binding at

the equilibrium. However, for case (a) under the trade condition, it never increases incentives to the point

that the gains from investing are equal to the full marginal gains, given by (SHH − SLH) . On the other

hand, if investments are strong substitutes and the gains from the second investment are very small (case

(b) above) the stochastically stable convention indeed induces full investment whenever this is efficient. This

is formalized in the following corollary.

Corollary 1 For SHH − δ
2(SHH − SLL) < SLH ≤ SHH the stochastically stable bargaining convention

induces full-investment for all values of c where full investment is efficient.

Proof. It is straight-forward to check that c3 ≤ SHH − SLH under these assumptions.

As pointed out above, our results about the stochastically stable bargaining conventions show that the

outside option acts rather as a threat point in the allocation of the joint surplus. This might raise the

question whether the efficiency result of corollary 1 is a simple implication of the difference in threat point

payoffs of the two types. To address this question let us denote by x̂N
LH the allocation consistent with the

Nash bargaining solution between a high and a low type where both have beliefs p̂ = 1 and the expected

payoffs in the following period are treated as a threat point. This allocation has to satisfy

x̂N
LH = δx̂N

LH +
1

2

(
SLH − δx̂N

LH − δ
SHH

2

)
,

and therefore we get

(5) x̂N
LH =

SLH

2
−

δ(SHH − SLH)

2(2− δ)
.
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Comparing this expression with the stochastically stable bargaining conventions from proposition 2, simple

calculations show that under our assumption of SLH > (SHH + SLL)/2 we always have x̂N
LH > xs

LH .

Accordingly, the investment incentives in a population of investors under the stochastically stable bargaining

norm are not only larger than under the equal split rule but also larger than under Nash bargaining with the

outside options as threat points. To understand this result intuitively we have to realize that the long run

stability of the bargaining norms are determined by their resistance to change in scenarios where deviations

from the norm have the highest chance of altering the norm. Bargaining norms are the easiest destabilized

in scenarios with low investment in the population since the amount an agent risks when following deviators

from the norm is the smallest under this investment pattern. If investments are substitutes a high type has a

lot of bargaining power in an environment of low types and hence the stochastically stable bargaining norm

gives a larger part of the surplus to the high types than they would get if the norm had been evolved in

a population of mostly high types. Hence, the stochastically stable convention allocates more to the high

types than the Nash bargaining solution in an environment of high types would. Since the stochastically

stable bargaining norm although developed in low investment scenarios is adhered to even if in the long run

everyone invests, it facilitates the development of full investment norms.

This discussion implies that the evolutionary approach facilitates the development of full investment. In

the following corollary we compare the stochastically stable outcome to the notion of a stable convention

under the equal split rule and the Nash bargaining solution:

Corollary 2 •

(a) If c satisfies
1

2
(SHH − SLH) < c <

δ

4
(SHH − SLL) +

1

2
(SHH − SLH),

then for λ sufficiently small the stochastically stable convention induces full investment, but {H,SLH/2}

is not a stable convention.

(b) If c satisfies
1

2− δ
(SHH − SLH) < c <

δ

4
(SHH − SLL) +

1

2
(SHH − SLH),

then for λ sufficiently small the stochastically stable convention induces full investment, but
{
H, x̂N

LH

}
is not a stable convention.

Two remarks concerning this corollary are in order. First, it is easy to see that the ranges of c given

in parts (a) and (b) are both non-empty if investments are substitutes and δ > 0. Second, part (b) shows

that if the allocation of surplus is determined by the Nash bargaining solution even with the outside option

as threat point there always remains a hold-up region, i.e. a range of parameters where full investment is

efficient but
{
H, x̂N

LH

}
is not a stable convention. On the other hand, this is not the case for the stochastically

stable bargaining convention. This result illustrates that in the case of substitutes, endogenously determined

bargaining conventions yield a larger set of parameter values with high investment than cooperative solutions.

Consider now the case of complements.
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7 The Case of Complements

Consider the case of complementary investments, where (SHH + SLL) /2 ≥ SLH ≥ SLL. This implies that

SHH − SLH ≥ SLH − SLL, and hence the marginal gain from investment is higher after one person has

invested. If the trade condition is not satisfied, then for SLH sufficiently close to SLL, either the high types

prefer to wait for a high type rather than trade with a low type if p̂, the fraction of higher types, is sufficiently

high, or the low types prefer to wait for a low type rather than trade with a high type if p̂, the fraction of

higher types, is sufficiently low. When this occurs, a stable norm of behavior does not evolve, as shown in

the following proposition.

Proposition 4 Suppose that investments are complements and the trade condition does not hold, that is

C(δ) = ∅, then for sufficiently large m, n and k the unique stochastically stable sets of the process {σt} is L,

as defined in lemma 2, and there exist no stochastically stable bargaining conventions.

Proof. This follows immediately from Lemma 2, which shows that the set L is the only limit set under

these conditions.

Therefore, a necessary condition for the evolution of a bargaining convention is C(δ) �= ∅, where regardless

of the fraction of high types expected in the market, there exist bargaining conventions such that both high

and low types prefer to trade rather than wait. In this case, there is a unique stochastically stable bargaining

convention which again does not depend upon beliefs regarding the fraction of high types in the market.

Proposition 5 Suppose the trade condition holds, then for sufficiently large m, n the limit of the stochas-

tically stable sets of the process {σt} for k → ∞ can be characterized as follows:

(a) For SLL ≤ SLH ≤ δ
2((2− δ)SHH + SLL) the stochastically stable bargaining convention is

x̂s
LH = SLH − δ

SHH

2
.

(b) For δ
2((2− δ)SHH + SLL) < SLH ≤ (SHH + SLL) /2 the stochastically stable bargaining convention is

x̂s
LH =

SLH

2
−

δ

2(2− δ)
(SLH − SLL).

Case (a) occurs when the outside option for the high type is binding for p̂ = 1. A necessary and sufficient

condition for this case to apply is:

1−

√
1− 2

(
SLH − SLL

SHH

)
≤ δ ≤

2SLH

SHH + SLL
.

If the discount factor is too high, then individuals do not wish to enter into HL trade. Conversely, if

the discount factor is low, then the outside option for the high type is not binding. However, as case (b)

illustrates, one of the implications of stochastic stability criteria is that, as in the case of substitutes, the

existence of an outside options always increases the payoff for the high type relative to the equal division

solution. On the other hand, it can be easily verified that the Nash bargaining solution with the outside
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option as threat point, given by (5), gives a smaller allocation of the surplus to low types compared to the

stochastically stable convention and therefore provides higher investment incentives.

With complements investment incentives are larger for p̂ = 1 than for p̂ = 0. This implies that if no

investment is optimal at p̂ = 1, no individual will invest any more, once the bargaining convention x̂LH has

been established — a no-investment convention is induced. On the other hand, if investment is optimal at

p̂ = 0, everyone invests under the stochastically stable bargaining convention — a full investment convention

is induced. However, if investment is optimal for p̂ = 1 and no investment is optimal for p̂ = 0, both

the homogeneous state corresponding to full investment and the homogeneous state corresponding to no

investment are locally stable states in the sense that the process never leaves each of these states as long as

high investment always implies high types and low investment always implies low types. In such a scenario

the threshold p∗ defined in (4) is in (0, 1) and investment is optimal if and only if p̂ ≥ p∗(x̂LH).

Investment effects are however assumed to be stochastic, and therefore there is always a positive prob-

ability that the process wanders from a non-investment to a full investment state and vice versa. As in

the case of substitutes, for a given bargaining convention the evolution of the distribution of high and low

types is described by a Markov process {σ̃t}
∞
t=0 on the state space S̃. Denoting again by π̃∗ the unique limit

distribution we get the following lemma:

Lemma 4 Assume that 0 < λ < 0.5 and m and n are and sufficiently large and a bargaining convention

xLH is given. Then, for p∗(xLH , λ) > (<)0.5 we have
∑

i<n/2 π̃
∗
i/n(λ) > (<)

∑
i>n/2 π̃

∗
i/n(λ). Furthermore,

we have limλ→0 π̃
∗
0 = 1 if p∗(xLH , 0) > 0.5 and limλ→0 π̃

∗
1 = 1 if p∗(xLH , 0) < 0.5.

According to this lemma p∗(xLH , 0) < 0.5 implies that in the long run the probability to have a majority

of high types is larger than the probability to have a majority of low types and as λ goes to zero the

probability to see only high types goes to one. Note that in the case of complements the investment stage

has the structure of a coordination game and hence this lemma basically rephrases well known results by

Kandori, Mailath, and Rob (1993). We say that a no-investment convention is induced if the threshold

p∗(xLH , 0), is larger than 0.5 and that a full investment convention is induced if this inequality holds the

other way round. Using this we get the following characterization of the investment conventions induced by

stochastically stable bargaining conventions.

Proposition 6 Assume that m,n and k are sufficiently large, the trade condition holds, and investments are

complements, then the stochastically stable bargaining convention induces full investment if c < c4(SLH , δ)

and no-investment for c > c4(SLH , δ), where

(6) c4(SLH , δ) =

{
1
4(SHH − SLL) +

1
2(δSHH − SLH) if SLH ≤ δ

2((2− δ)SHH + SLL),
1
4(SHH − SLL) +

δ
2(2−δ) (SLH − SLL) if not.

It follows from the coordination game structure of the investment stage that a bargaining norm x̂LH

does not necessarily induce a high investment convention even if {H,SLH/2} is a stable convention. An

interesting implication of this insight, especially when compared to the case of substitutes, is that the set

of parameters for which a full investment convention is stable under the equal split rule is larger than the
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set of parameter values for which high investment is part of a stochastically stable equilibrium. To see this,

notice that if λ = δ = 0, then {H,SLH/2} is a stable convention if and only if:

1

2
(SHH − SLH) ≥ c.

Therefore the following result is immediate.

Corollary 3 When δ and λ are sufficiently small, then if c satisfies:

1

4
(SHH − SLL) < c <

1

2
(SHH − SLH) ,

{
H, SLH

2

}
is a stable convention, but there is no stochastically stable convention with full investment.

Clearly, if the Nash bargaining solution x̂N
LH would be considered instead of the equal split rule the region

with a stable high investment convention but no stochastically stable convention with high investment would

be even larger. Overall these results illustrate that in the case of complements, stochastic stability implies

that the holdup problem is even more severe than under the assumption of cooperative bargaining solutions.

8 Discussion

In this model we have assumed that, when bargaining over the joint surplus, each individual makes her bid

contingent on the type of the two partners (i.e. on their contribution to the joint surplus) but not explicitly

on the investment. If one would assume that investment itself is observable as well and taken into account

by the bidders, a bidding strategy would have to specify a bid for each combination of investment and type

of the two players. In ?) it has been shown that in a framework, where investment and type coincide with

certainty, bargaining conventions are never established and the set of values of c and SLH where long run

investment conventions evolve is small compared to the set where investment is efficient. The problem is

that in order for a convention of behavior to develop, it must be observed in the long run. When investments

are observable, and high investment is the desired equilibrium, then LH trades would not be observed.

Consequently, beliefs regarding the appropriate division in this cases tend to drift around, and an efficient

convention cannot be sustained. This implies that an increase in the amount of observable information would

yield a decrease in the long-run efficiency. It should be pointed out, that the fact that we consider two-sided

investment is essential here. Tröger (2000) and Ellingsen and Robles (2000) assume deterministic investment

effects in their analyses of the one-sided investment case and there the drift of beliefs is the driving force

behind their efficiency results.

The case of stochastic investment does ensure the evolution of a bargaining convention whenever the

trade condition is satisfied, in other words, as long as individuals find it in their interest to always trade,

and there are always a significant number of HL trades occurring. In contrast to the earlier results for the

one-sided investment case we find that for δ = 0 the bargaining convention ignores prior investment. This

is a key ingredient for holdup to occur, as illustrated in Grout (1984) and Grossman and Hart (1986) who

assume the terms of trade are determined by the Nash bargaining solution.
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The amount of long run investment in our model depends crucially upon whether investments are sub-

stitutes or complements. In the case of substitutes, the level of investment is high for a wider range of

parameter values as compared to the standard holdup model based upon either the equal split rule or the

Nash bargaining solution. Conversely, with complements the situations is worse, and therefore we conclude

that when learning is incorporated into investment behavior one obtains quite different results compared to

the static model. Moreover, whether or not learning makes the situation better or worse is sensitive to the

degree of complementarity between investments.

The distinction between our results and those of Tröger (2000) and Ellingsen and Robles (2000) have

analogies in the contract theory literature. In the case of one sided investment when trade is always efficient

then the results of Grossman and Hart (1986) and Hart and Moore (1990) illustrate a number of mechanisms

can be used to achieve efficient investment, including the use of fixed price contracts and the appropriate

allocation of property rights.4 Our model corresponds to the case of cooperative investment, that is both

parties make investments that affect the other person’s gain.5 . In this case, as Che and Hausch (1999) and

Hart and Moore (1999) observe, there does not exist any renegotiation proof mechanism that can implement

the first best. Moreover, even if the mechanism entails inefficient punishments, since SLH = SHL at least

for δ = 0 there is no way to screen between the H and L types ex post, hence any mechanism uniquely

implementing high investment would entail some social loss.

A new element of the current paper, relative to the previous work, is that we consider the effect of

potential competition. One reason for exploring this effect is that earlier work by MacLeod and Malcomson

(1993), and more recently Felli and Roberts (2000) and Cole, Mailath, and Postlewaite (2000) have shown

that potential competition, even if imperfect, may completely solve the holdup problem. In this paper we

find that imperfect competition acts more like a threat point in the Nash Bargaining sense, than as outside

options. This is found to always increase the incentives for efficient investment, and in the case where

investments are strong substitutes this leads to efficient investment.

Finally, it is the case that in this model there exist efficient equilibria, all of which have the property

that the terms of trade are sensitive to sunk costs. Carmichael and MacLeod (1999) have shown that when

there is sufficient diversity in payoffs the efficient rule is unique. Thus efficient fair division rule should

incorporate the effect of sunk costs, which may explain why sunk costs may matter in decision making, as

first observed by Thaler (1980). The results of this paper suggest that from the perspective of a simple two

party investment problem, there appears to be a tension between sharing rules that are ex ante efficient,

and those that are stochastically stable. Hence it is still an open question as to which precise process leads

individuals to be sensitive to sunk costs. On the positive side, these results suggest that there are limits

to development of efficient norms of behavior which are sensitive to the degree of complementarity between

investments, and which may explain why efficiency is enhanced through the explicit introduction of social

4Also see the recent work of Robles (2001) who explores the evolution of contracts in the one-sided investment case.
5 In the case of a buy-seller relationship, the self-investment case corresponds to the buyer making investments that affect

the utility from consuming the good, while the seller’s investment affects the cost of production. In this case a simple fixed

price contract can achieve efficiency if trade is always efficient. A cooperative investment would for example include situations

in which the seller’s investment affects the buyer’s consumption utility. Our model can be viewed as a general representation

of this case.
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institutions, such as firms. The exact mechanism by which this occurs is a question for future research.
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Appendix

Proof of Proposition 1:

Efficiency implies SHH − c > SLH > 0, therefore if one sets x̂LH = 0, then conditions 1 and 3 for a stable

convention are strictly satisfied for λ = 0. The trade condition implies that SLH > δ (SLL + SHH) /2 >

δSHH/2 and therefore condition 2 is strictly satisfied. Given that the expressions in the definition of stability

are continuous for small λ, the conditions for stability are satisfied for small λ. �

Proof of Lemma 1:

Let s and s′ be two arbitrary states in S. We show that there is a positive multi-step transition probability

from s to s′ and a positive one-step transition probability from s′ to s′. This then implies that the process

is irreducible and aperiodic.

Assume that σt = s. With positive probability the bargaining strategy of all agents at time t is such

that all agents carry out the project (some mutations of bargaining strategies might be needed) and leave

the population. Hence, with positive probability in period t+1 the types of all agents in the population are

determined anew and with a positive probability the resulting distribution of types matches exactly the one

in s′. Every period there is positive probability that the distribution of types stays like that. If there are both

high and low types in s′ it is straight-forward to see that any set of observations needed to create empirical

distribution functions which have positive weight in s′ can be created by multiple mutations of bargaining

behavior of the agents given the type distribution. In case there are only high or only low types in s′ consider

the transition where first all but one agent get the type required in s′, then all the observations needed to

create all the beliefs in s′ are created by mutations and finally the single agent with a different type leaves

the population and changes her type. In any case there is a positive probability that s′ is reached in multiple

steps. Furthermore, since there is always a positive probability that all agents only observe matches between

the same types during a period and therefore do not change their beliefs, there is a positive probability that

the process stays in s′ once it has reached s′. Hence, the process is irreducible and aperiodic. �.

Proof of Lemma 2:

a:

First we show that all the sets given in the Lemma are limit sets, i.e. we have to show that for ε = 0 they

are absorbing and for each pair of states in such a set there is a positive (multi-step) transition probability.

It follows from the definition of C(δ) that if x ∈ C(δ) and all individuals have point beliefs β such

that F̂LH(·, β) = P(x), F̂HL(·, β) = P(SLH − x), all individuals have the optimal bargaining strategy
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xLH = x, xHL = SLH − x. Therefore, in the absence of mutations these point beliefs can never be altered

and therefore Ω(x) is absorbing. Furthermore, since in every period every distribution of types has a positive

probability regardless of the actual investment behavior, and so also for every p̂ ∈ P there is a positive

probability that a sample yielding such an estimator is observed, all possible distributions of types and p̂ can

be reached with positive probability. Hence, the set Ω(x) is connected, which implies that it is a limit set.

To proof that these are the only limit sets, we show that from every state which is not in one of the limit

sets described above there is a positive probability to reach one of these sets. This comes down to showing

that a homogeneous bargaining convention which is consistent with all p̂ ∈ P can always be reached with

positive probability. The transition can go as follows: assume σt = s for some arbitrary state s ∈ S. With

positive probability there are at least m low types in σt+1 and with positive probability at t + 2 there is

some pairing of a low type agent aL and a high type agent aH with bids x̃HL, x̃LH , where aL has beliefs β

such that p̂(β) = 0 and accordingly x̃LH ≥ δSLL

2 . With positive probability this pairing is repeated m times

from period t+ 2 till t+m− 1 and one agent, we call him bH , in the population samples all these pairings

but no other high-low pairings. Accordingly, at t + m she has beliefs such that F̂LH(·, βt+m) = P(x̃LH).

Furthermore, there is a positive probability that the beliefs of aL (or the agent who replaces her) only

observes high-high meetings during this period and her beliefs stay unchanged. Furthermore there is a

positive probability that aL and bH are matched in periods t + m till t + 2m − 1. In each such matching

the two bids are x̃LH of aL and SLH − x̃LH of bH . Again, there is a positive probability that all individuals

sample only these high/low pairings during periods t + m to t + 2m − 1. Then in t + 2m all agents have

beliefs such that F̂LH(dot, βt+2m) = P(x̃LH), F̂HL(·, βt+2m) = P(SLH − x̃LH). If SLH − x̃LH ≥ δSHH

2 we

have x̃LH ∈ C(δ) and the proof of (a) is complete.

If SLH − x̃LH < δSHH

2 , there is a positive probability that in period t+2m+2 there is a high type with

p̂ = 1. This agent then makes a bid ˜̃xHL such that ˜̃xHL − α < δSHH

2 ≤ ˜̃xHL and the same arguments as

above imply that there is a positive probability that a homogeneous state will evolve where for all agents

hold beliefs β such that F̂LH(·, β) = P(SLH − ˜̃xHL), F̂HL(·, β) = P(˜̃xHL). Since δ < 2SLH

SHH+SLL
implies

δSHH

2 > SLH − δSLL

2 , we have SLH − ˜̃xHL ∈ C(δ) for sufficiently small α.

b:

Assume σt = s for an arbitrary state s ∈ S. Assume that there are at least m low types and at least m

high types in the population (if this is not true, there is a positive probability that at least m low and

high types will be in the population within two periods). Then, there is a positive probability that in pe-

riod t + 1 all low types have beliefs p̂i = 0 and at least m are matched with high types. The resulting

demands at t + 1 of these low types are larger or equal to xLH(0). There is a positive probability that

at least m high types observe these m demands in t + 2 and that the same m high types in period t + 3

have beliefs such that p̂(βi) = 1 and are matched with low types. Since for these individuals we have

F̂LH(·, β) = P(xLH(0)) and xLH(0) > x̄LH(1) all the outside option is binding for all these high types and

they demand xHL = SLH − x̄LH(1) in period t+ 3. With positive probability these m demands are sampled

by all agents in t+4 and hence all agents have beliefs such that F̂HL(·, β) = P(SLH− x̄LH(1)). With positive

probability these beliefs stay unchanged till t+ 5 whereas the belief about the type distribution changes to
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p̂(β) = 0. With positive probability in t+5 now at least m low type agents are matched with high types and

since xLH(0) > x̄LH(1) their outside option is binding and their demands are xLH = xLH(0). With positive

probability all agents sample the demands of these m low types in t + 6 and hence all agents have beliefs

β such that (p̂(β) = 0, F̂HL(·, β) = P(SLH − x̄LH(1)), F̂LH(·, β) = P(xLH(0))). We denote this state by s̃.

The fact that there exists a positive multi-step transition probability from every state to s̃ implies that the

Markov chain has a single limit set which includes s̃. Obviously, this single limit set consists of all states

which can be reached with positive probability from s̃. Taking into account that every demand of a high

type where the outside option is binding has to be in BHL and that the best response of a high type with

some beliefs F̂LH with support in BLH and p̂ ∈ P must lie in BHL as well, shows that all demands of high

types have to be in BHL once s̃ has been reached. Similarly for a low type. Accordingly, given that ε = 0,

any observation outside BHL ×BLH has probability zero once s̃ has been reached before. �

Proof of Proposition 2:

We have to determine which of the limit sets characterized in Lemma 2 are stochastically stable. We use the

radius modified coradius criterion introduced in Ellison (2000). For a union of limit sets Ω the radius R(Ω)

is defined as the minimum number of mutations needed to get to a state outside the basin of attraction of Ω

with positive probability. The modified coradius CR∗(Ω) is defined as follows: consider an arbitrary state

x �∈ Ω and a path (z1, z2, . . . , zT ) from x to Ω where L1, L2, . . . , Lr ⊂ Ω is the sequence of limit sets the path

goes through (this implies Lr ⊆ Ω). We define the modified costs of this path by

c∗(z1, . . . , cT ) = c(z1, . . . , zT )−
r−1∑
i=2

R(Li),

where c(z1, . . . , zT ) gives the number of mutations needed on the path (x1, . . . , zT ). Denoting by c∗(x,Ω)

the minimal modified costs for all paths from x to Ω we define the modified coradius as

CR∗(Ω) = max
x �∈Ω

c∗(x,Ω).

Ellison (2000) proves that every union of limit sets Ω with R(Ω) < CR∗(Ω) contains all stochastically stable

states.

In what follows we calculate the radius and modified coradius of the bargaining conventions described in

Lemma 2. In the case of substitutes the limit sets are of the form Ω(xLH) for xLH ∈ C(δ). Let x̃LH be an

arbitrary bargaining convention with x̃LH ∈ C(δ). To destabilize the convention upwards either a sufficient

number of high types have to mutate to a xHL smaller than SLH − x̃LH , in the extreme case xHL = 0,

such that the best response of a high type who has sampled all these mutants becomes xLH = SLH , or a

sufficient number of low types have to mutate to xLH = x̃LH + α such that the best response of a high

type who has sampled all these mutants becomes xHL = SLH − x̃LH − α, where α = SLH

k . As has been

demonstrated in Young (1993), for sufficiently small α the second of these two possibilities yields transitions

with a lower number of mutations (the number goes to zero as α goes to zero). Similar arguments hold for

a downwards destabilization and therefore in order to leave a convention x̃LH with the minimal necessary

number of mutations either the path to x̃LH + α or the path to x̃LH − α has to be taken. We define by
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c+(xLH) the minimal number of mutations needed to get to x̃LH + α and by c−(xLH) the minimal number

of mutations needed to get to x̃LH − α. We first calculate c+(x̃LH).

The number of mutations needed to destabilize a convention also depends on the beliefs p̂. We first show

that the minimal number of mutants either occurs at p̂ = 0 or at p̂ = 1. Consider a low type whose beliefs

F̂HL attach probability q to xHL = SLH − x̃LH + α and 1 − q to xHL = SLH − x̃LH . Denote by v the

expected discounted payoff of this individual given that he faces a high type and bids xLH = x̃LH whenever

facing a high type. Taking into account that he will always trade immediately when he meets another low

type we get

v = (1− q)x̃LH + δq

(
p̂v + (1− p̂)

SLL

2

)
and

v(q; p̂) :=
(1− q)x̃LH + δq(1− p̂)SLL/2

1− δqp̂
.

Note that this expression is monotonous in p̂ for p̂ ∈ [0, 1] (increasing or decreasing). The minimal number

of mutations needed to destabilize the convention is given by �mq̃�, where q̃ is the minimal q such that:

v(q; p̂) < x̃LH − α

holds for some p̂ ∈ [0, 1]. Since the right hand side is constant in q and p̂ and the left hand side is monotonous

in p̂ for all q the minimal q is either attained at p̂ = 0 or at p̂ = 1.

With p̂ = 0 we get

v(q; 0) = (1− q)x̃LH + δq
SLL

2
,

which gives

q > q1−(x̃LH) :=
α

x̃LH − δ SLL

2

.

For p̂ = 1 we have

v(q, 1) =
1− q

1− δq
x̃LH .

Accordingly, the convention can be destabilized downwards if

q < q2−(x̃LH) :=
α

x̃LH(1− δ) + δα
.

Comparing the two we see that q1−(x̃LH) < q2−(x̃LH) if and only if x̃LH > SLL

2 + α. All-together we have

c−(x̃LH) =




q1−(x̃LH) x̃LH ≥ SLL

2 + α

q2−(x̃LH) x̃LH < SLL

2 + α.

Similar reasoning for destabilizations upwards shows for a high type, who is matched with a low type

and who beliefs that a fraction q of low types demands xLH = x̃LH + α and a fraction 1 − q of low types

demands xLH = x̃LH , has the following expected payoff from demanding xHL = SLH − x̃LH :

w(q; 0) = 1−q
1−δq (SLH − x̃LH)

w(q, 1) = (1− q)(SLH − x̃LH) + δq SHH

2 .
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This implies

c+(x̃LH) =




q1+(x̃LH) x̃LH ≥ SLH − SHH

2 − α

q2+(x̃LH) x̃LH < SLH − SHH

2 − α,

where

q1+ =
α

(SLH − x̃LH)(1− δ) + δα

q2+ =
α

SLH − x̃LH − δ SHH

2

.

The function c− is decreasing in x̃LH whereas c+ is increasing in this variable which implies that they

have a unique intersection. We denote this intersection point by x̂LH . Clearly at this point min[c−, c+] is

maximized. For

(7) δ ≤
2(SHH − SLH)

SHH − SLL

x̂LH lies on the intersection of q1− and q1+ and is given by

(8) x̂LH =
SLH

2
−

δ

2(2− δ)
(SLH − SLL − 2α).

To establish (a) we first observe that under the assumptions made in (a) the condition (7) holds and

x̂LH ∈
[
δSLL

2 , SLH − δSHH

2

]
for small α. Hence, there exists a ˆ̂xLH ∈ C(δ) that maximizes min[c+, c−] over

C(δ) and whose distance from x̂LH is smaller than α. Taking into account Lemma 2 this in particular implies

that there is a limit set corresponding to the bargaining convention ˆ̂xLH .

>From the arguments above it follows that for every xLH ∈ C(δ) with xLH < ˆ̂xLH we have for the radius

of the limit set Ω(xLH): R(Ω(xLH)) = �mc+(xLH)� and for every xLH ∈ C(δ) with xLH > ˆ̂xLH we have

R(Ω(xLH)) = �mc−(xLH)�. >From every limit set Ω(xLH) there is a path to Ω(ˆ̂xLH) along a graph g which

connects every limit set Ω(xLH) where xLH < ˆ̂xLH with Ω(xLH + α), and every limit set Ω(xLH) where

xLH > ˆ̂xLH with Ω(xLH − α). This implies that

CR∗(Ω(ˆ̂xLH)) ≤ max
xLH∈C(δ)\{

ˆ
x̂LH}

R(Ω(xLH)).

For sufficiently large m we have R(Ω(ˆ̂xLH)) > R(Ω(xLH)) for all xLH ∈ C(δ) \ {ˆ̂xLH} and therefore

R(Ω(ˆ̂xLH)) > CR∗(Ω(ˆ̂xLH)). Using the radius-modified coradius criterion we can conclude that the limit

set corresponding to ˆ̂xLH is stochastically stable. For k → ∞ we have ˆ̂xLH → x̂LH and get (a). Exactly

the same arguments establish (b), where it has to be taken into account that in this case x̂LH lies at the

intersection of q1− and q2+ which is given by

x̂LH =
SLH

2
−

δ

4
(SHH − SLL)

�

Proof of Lemma 3:
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Parts (a) and (b) are trivial. To prove part (c) we denote by Q(λ) = [qij(λ)]i, j ∈ S̃ the one-step transition

matrix of the Markov process {σ̃t}. It can then easily be established that limλ→0 qi0 + qi1 > 0 for all i ∈ S̃.

Furthermore, at state i = 0 no individual can sample any high types and hence we have p̂(β) = 0 for all

individuals and accordingly all choose high investment. Therefore limλ→0 q01 = 1 and by the same reasoning

limλ→0 q10 = 1. Therefore, the only limit set for λ → 0 is {0, 1} which implies that limλ→0 π̃
∗
i (λ) = 0 for all

i ∈ S̃ \ {0, 1}. Using this we get from the Chapman-Kolmogoroff equation at state 0

π̃∗
0(λ)


 ∑

i∈S̃\{0}

q0,i


 =

∑
i∈S̃\{0}

qi,0π̃
∗
i (λ)

that limλ→0 π̃
∗
0 = limλ→0 π̃

∗
1 = 0.5. �

Proof of Proposition 5:

The proof of (b) is identical to the proof of part (a) of proposition 2. To proof (a) we again follow the proof

of proposition 2 but observe that for SLH < δ
2((2− δ)SHH + δSLL) we have x̂LH > SLH − δ SHH

2 . Therefore

the point which maximizes min[c+, c−] over C(δ) is given by ˆ̂xLH where ˆ̂xLH ≤ SLH − δ SHH

2 < ˆ̂xLH + α.

Stochastic stability of the limit set Ω(ˆ̂xLH) is established analogous to the proof of proposition 2 but here

we have ˆ̂xLH → SLH − δ SHH

2 for k → ∞. �

Proof of Lemma 4:

We show the proposition for p∗(xLH) > 0.5, the other case analogous.

We denote again the one-step transition matrix of the process{σ̃t} by Q = [qij(λ)]i, j ∈ S̃ We can write

these transition probabilities as

qij =

(
n

j

)
βj
i (1− βi)

n−j ,

where

βi = (1− λ)s(mp∗(xLH); i) + λ(1− s(mp∗(xLH); i))

is the probability that a randomly chosen individual is of high type. Note that for a given bargaining

convention the investment decision only depends on the number of high types sampled by an individual in

the current period. We denote by

s(mp∗(xLH); i) =
∑

k≥mp∗

(
m

k

)(
i

n

)k (
1−

i

n

)m−k

the probability that an individual samples more than mp∗(xLH) high types in a population with i high

types. Since we are dealing with the case of investment complements here, this is the probability of high

investment.
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Note first that

1− s(mp∗; i) =
∑

k<mp∗

(
m

k

)(
i

n

)k (
1−

i

n

)m−k

=
∑

k>m(1−p∗)

(
m

k

)(
i

n

)m−k (
1−

i

n

)k

>
∑

k>mp∗

(
m

k

)(
1−

n− i

n

)m−k (
n− i

n

)k

= s(mp∗;n− i),

where the inequality follows from p∗ > 0.5. Using this we get that for λ < 0.5

1− βn−i = 1− (1− λ)s(mp∗;n− i)− λ(1− s(mp∗;n− i))

= 1− λ− s(mp∗;n− i)(1− 2λ)

> 1− λ− (1− s(mp∗; i))(1− 2λ)

= (1− λ)s(mp∗; i) + λ(1− s(mp∗; i))

= βi.

This means that in a population with i high types the probability that an individual becomes a high type

is smaller than the probability that an individual becomes a low type in a population with i low types.

In particular, this implies that the probability that at least z individuals become high types in state i
n is

smaller than the probability that at least z individuals become low types in state n−i
n for all z. We denote by

L =
{
0, 1

n , . . . ,
n−2
2n

}
, H =

{
n+2
2n , . . . , n−1

n , 1
}
, L̃ = L ∪

{
n
2

}
and by H̃ = H∪

{
n
2

}
. Furthermore we denote

by qiL the transition probability from state i into the set L and analogous the transition probabilities into

the other sets defined above. The arguments above imply that

qiL > qn−iH and qiL̃ > qn−iH̃ ∀i.

Note that both (L, H̃) and (L̃,H) are partitions of the state space, therefore under the stationary distribution

the flows between L and H̃ must be identical in both directions and so have to be the flows between L̃ and

H. This gives

n/2−1∑
i=0

π̃∗
i qiH̃ =

n/2∑
i=0

π̃∗
n−iqn−iL(9)

n/2∑
i=0

π̃∗
i qiH =

n/2−1∑
i=0

π̃∗
n−iqn−iL̃(10)

Our claim can now be easily shown by contradiction. If
∑n/2−1

i=0 π̃∗
i ≤

∑n/2−1
i=0 π̃∗

n−i we can use qiH < qn−iL

for all i to derive that
n/2∑
i=0

π̃∗
i qiH <

n/2∑
i=0

π̃∗
n−iqn−iL
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Since (9, 10) have to hold this implies

n/2−1∑
i=0

π̃∗
n−iqn−iL̃ <

n/2−1∑
i=0

π̃∗
i qiH̃

But we also have qiH̃ < qn−iL̃ for all i and therefore this inequality contradicts our assumption that∑n/2−1
i=0 π̃∗

i ≤
∑n/2−1

i=0 π̃∗
n−i. Accordingly, we must have

∑n/2−1
i=0 π̃∗

i >
∑n/2−1

i=0 π̃∗
n−i

To show that limλ→0 π̃
∗
0 = 1 we can again apply the radius-modified coradius criterion. For λ = 0 there

are two limit sets, namely {0} and {1}. In order to invest high an individual has to sample at least �mp∗�

high types. Therefore the radius of {0} is given by R({0}) = �mp∗�. On the other hand, the state where

maximal the number of mutations is needed to have a positive transition probability into {0} is the state

1 and therefore we have CR∗({0}) = �m − mp∗�. For p∗ > 0.5 this implies that R({0}) > CR∗({0}) for

sufficiently large m and therefore limλ→0 π̃
∗
0 = 1. �
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