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Abstract

This paper studies the estimation of a simple binary choice model in which ex-
planatory variables include nonstationary variables and the distribution of the model
is not known. We Þnd a set of conditions under which the coefficients of the nonsta-
tionary variables are identiÞed. We show that the maximum score estimator of the
nonstationary coefficients is consistent.

1 Introduction
The main purpose of this paper is to investigate asymptotic properties of the maximum
score estimator of a nonstationary binary choice model. The nonstationary binary choice
model is particularly favored when we estimate the decisions that may be affected by
fundamental macroeconomic or Þnancial variables, many of which are known to show
nonstationary characteristics. Park and Phillips (2000) recently investigated a parametric
nonstationary binary choice model in which the known distribution of the model belongs
to a certain regular class. The important asymptotic results were that the maximum
likelihood estimator of the parametric nonstationary binary choice model converges at a
rate of n1/4 and its limiting distribution is a mixture of two mixed normal distributions.1

In this paper, we consider a nonstationary binary choice model where the distribution
of the binary variable is unknown. The model allows for the latent variable to be het-
erogeneous due, for example, to structural breaks. The model also allows for endogenous
regressors.
Various semiparametric estimation methods have been proposed for the conventional

binary choice models for random samples with unknown error distributions. (See Horowitz,
1998, for a survey of these developments.) One of them is the maximum score estimation
method originally proposed by Manski (1975), which is known to be robust to the hetero-
geneity of the model. Assuming that the median of the error term in the equation for the
latent variable is zero, Manski (1985) proved the (strong) consistency of the maximum
score estimator of the parameter in the binary choice model with randomly sampled data.

∗I wish to thank the Associate Editor and an anonymous referee for valuable comments. I am grateful
to Emmanuel Guerre, Geert Ridder, Quang Vuong, Robert Dekle, and Yong Kim for helpful discussions.
In particular, Emmanuel Guerre pointed out an error in Section 2 of an earlier version and gave me very
helpful suggestions. I also thank Katherine Goodman for proofreading.

1This asymptotic result holds under the assumption that the coefficient vector of the nonstationary
variables is different from zero. When it is zero, the maximum likelihood estimator has a convergence
rate of order n (see Guerre and Moon, 2002).
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Later, Cavanagh(1987) and Kim and Pollard (1990) showed that the convergence order of
the maximum score estimator is n1/3, slower than the usual rate of n1/2, and its limiting
distribution is nonstandard. Smoothing the non-differentiable score function and impos-
ing further restrictions on the model, Horowitz (1992) shows that the maximum score
estimator can achieve a faster convergence rate (at least n2/5 and can make arbitrarily
close to n1/2) and has a normal limit distribution.
When the model is nonstationary, none of these asymptotic results about the maximum

score estimator are known. There are two major Þndings in this paper. First, we Þnd a set
of conditions under which the coefficients of the nonstationary regressors are identiÞed.
Second, we show that the maximum score estimator of the coefficient of the nonstationary
variables is consistent. For this, we derive the uniform (weak) limit of the sample score
function of the data that include nonstationary observations. We prove that the limit
function is maximized uniquely at the true parameter of the nonstationary variables.
When the data is randomly selected, the uniform convergence of the sample score function
can be derived using conventional empirical process theories (see, for example, Kim and
Pollard, 1990). However, when the data include nonstationary samples, the conventional
empirical process theory cannot be applied. In this context, establishing the uniform
convergence result can be considered one of the major theoretical contributions of this
paper.
The paper is organized as follows. In Section 2, we introduce a nonstationary binary

choice model and regulatory conditions. In Section 3, we deÞne a maximum score estima-
tor, derive the uniform limit of the sample score function, and investigate consistency of
the maximum score estimator. The appendix contains all the technical proofs.
Some words on notation: Notation � d=� signiÞes equivalence in distribution, �

p→�
convergence in probability, �a.s.→� almost sure convergence, and �⇒� convergence in dis-
tribution. We denote kxk to be the Euclidean norm of vector x. When A is a set, 1 {A}
denotes the indicator function of the set A.

2 Model and Assumptions

We start by introducing a binary choice model that includes nonstationary regressors. For
a real number a, we denote sgn (a) = 1, if a ≥ 0, and sgn (a) = −1, if a < 0. The model
assumes that an observable binary variable yt is generated by

yt = sgn
¡
β00xt + γ

0
0zt − ut

¢
, (1)

where xt is a k−vector valued explanatory variable, zt is anm−vector valued explanatory
variable, and ut is an unobservable error term, satisfying the following assumption:

Assumption 1 (i) Let xt = xt−1 + vt with x0 = 0. Then, vt =
P∞
j=0 cjεt−j , whereP∞

j=0 j kcjk <∞,
P∞
j=0 cj 6= 0, and εt is a k − vector valued iid process with zero mean

and E kεtkp <∞ for some p > 2. DeÞne C =
P∞
j=0 cj . (ii) Σv = CC

0 is positive deÞnite.
Let st = (z0t, ut)

0. (iii) st satisÞes max1≤t≤nE kstk2+δ <∞ for some δ > 0.

According to Assumption 1, the explanatory variable xt is integrated implying non-
stationary (Assumption 1(i)) and the elements of xt are not cointegrated (Assumption
1(ii)). Assumption 1(iii) assumes that variables zt and ut are not integrated and they
have uniformly Þnite moments that are higher than two.2

Note that the model does not assume that the distribution of ut is known. The model
does not impose any restriction on the quantiles of the (conditional) distribution of ut,

2Here we implicitly assume that the integration order of the variables is known or pre-tested.
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either. Instead, the model imposes a moment condition as in Assumption 1(iii). Also
notice that under Assumption 1 the regressor zt and the error term vt generating xt
could be correlated with ut, and so we allow for endogeneity in the model. Finally, the
model allows that ut could be heterogenous over time and may have structural breaks.
The nonstationary binary choice model studied by Park and Phillips (2000) assumes that
the error term ut is conditionally identically and independently distributed (iid) on the
information set generated by xs and zs, s ≤ t, the functional form of the density of ut is
known, and the density function belongs to a certain regular parametric family.

Next, we assume that the parameters in the binary choice model are normalized. This
normalization assumption is required for the identiÞcation of the parameters, which has
been assumed in most semiparametric binary choice models for cross section data (for
example, Manski 1975, 1985 and Horowitz, 1992).

Assumption 2 (i) β0 6= 0. (ii) The parameter set for
¡
β0, γ0

¢0
is denoted by B×Γ, where

B is a unit sphere3 in Rk and Γ is a compact subset in Rm.

Imposing Assumption 2, this paper considers only the nontrivial case, k ≥ 2.

In many empirical applications, binary choice model (1) could be interpreted using a
latent variable. Suppose that there is an unobservable latent variable y∗t that is generated
by

y∗t = β
0
0xt + γ

0
0zt − ut. (2)

Then, model (1) is equivalent to
yt = sgn (y

∗
t ) , (3)

where yt is the observable indicator. Under Assumption 1, the nonstationary latent vari-
able y∗t and the explanatory variables xt are cointegrated and the coefficient β0 measures
the long-run relationship between y∗t and xt.When y∗t is observable, it is well known that
the long-run relationship β0 can be consistently estimated. However, this result is not
known when we observe only the indicator yt and its distribution is unknown. The main
goal of this paper is to show that the long-run relationship parameter β0 is identiÞed
(up to the scale normalization) and Þnd a consistent estimation procedure for β0. As is
well known, when β0 is identiÞed up to a scale normalization, the consistent estimate of
β0 is useful in determining the (long-run) direction or measuring the (long-run) relative
effect of the unobserved latent variable y∗t with respect to the change of corresponding
nonstationary covariates.

Finally, we would like to point out that the parameter γ0 is not identiÞed under
Assumptions 1 and 2. To discuss this in more detail, let P denote the set of all distributions
for a sequence of observations {(yt, xt, zt)}t=1,2,... . Let P denote the distribution of the
sequence {(xt, zt, ut)}t=1,2,... . Then, in view of model (1), a typical element in P is indexed
by a parameter θ = (β, γ,P) , and we denote it Pθ. The regularity conditions imposed on
the parameter θ are that kβk = 1, γ ∈ Γ (Assumption 2) and the unknown distribution
P satisÞes Assumption 1. Let Θ be the set of all the admissible parameters that satisfy
the regularity conditions. We say that a sub-parameter g (θ) is identiÞed if and only if,
for θ and θ0 in Θ, Pθ = Pθ0 implies g (θ) = g

¡
θ0
¢
.

Without loss of generality, we assume that 0 is admissible for γ. Now, letting P1
be the distribution of {(xt, zt, ut − γ00zt)} , consider θ0 = (β0, γ0,P0) with γ0 6= 0 and
θ1 = (β0, 0,P1) . It is straightforward to see that θ1 is an admissible parameter because

3That is, B =
©
β ∈ Rk : kβk = 1ª .

3



0 ∈ Γ and under P1 Assumption 1 is satisÞed. Then, under Model Pθ1 , the observation
yt is generated by

yt = sgn
¡
β00xt − ut + γ00zt

¢
,

which is identical to the observation yt generated under Model Pθ0 . Therefore, under
Assumptions 1 and 2, the parameter γ0 of the stationary component is not identiÞed.

Before moving on, we introduce a result that is helpful in analyzing the weak limit of
the objective function that will be introduced in the next section. Let

V 0n (r) =
1√
n

[nr]X
t=1

vt,

and

S0n (r) =
¡
Z0n (r)

0
, U0n (r)

¢0
=
s[nr]√
n
=

µ
z[nr]√
n

0
,
u[nr]√
n

¶0
.

Assume that S0n (r) and V
0
n (r) are stochastic processes on D[0, 1]

m+1 and D[0, 1]k, re-
spectively, where D[0, 1]l is the l−fold Cartesian product of the space D[0, 1] that is the
set of cadlag functions on the interval [0, 1], with the uniform topology.

Lemma 3 Under Assumption 1, there exists a probability space (Ω∗,F∗,P∗) supporting
sequences of random vectors Vn (r) and Sn (r) =

¡
Zn (r)

0
, Un (r)

¢0
such that

(a) Vn (·) d= V 0n (·) and
sup
0≤r≤1

kVn (r)− V (r)k→ 0 a.s.,

where V (r) is a Brownian motion in (Ω,F ,P) with covariance matrix Σv,
(b) Sn (·) d= S0n (·) with

sup
0≤r≤1

kSn (r)k→ 0 a.s.

3 Maximum Score Estimation of β0
The maximum score estimator originally proposed by Manski (1975) is a binary analog of
the least absolute deviation estimator of a linear median regression model. Assuming that
the median of the error term in the equation for the latent variable is zero, Manski (1985)
proved that the maximum score estimator is strongly consistent. The main purpose of
this section is to investigate the identiÞcation of β0 and to show the consistency of the
maximum score estimator of the nonstationary binary choice model (1) .

First, let
³
�β, �γ

´
denote the maximum score estimator that maximizes the following

sample score function,

Q0n (β, γ) =
1

n

nX
t=1

sgn
¡
β0xt + γ0zt

¢
yt, (4)

over the parameter set B× Γ. DeÞne

Qn (β, γ) =

Z 1

0

sgn
¡
β0Vn (r) + γ0Zn (r)

¢
sgn

¡
β00Vn (r) + γ

0
0Zn (r)− Un (r)

¢
dr
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and

Q (β) =

Z 1

0

sgn
¡
β0V (r)

¢
sgn

¡
β00V (r)

¢
dr,

where V (r) is the Brownian motion in Lemma 3. Notice that Q (β) does not depend on
the parameter γ. Rewriting

Q0n (β, γ) =

Z 1

0

sgn
¡
β0V 0n (r) + γ

0Z0n (r)
¢
sgn

¡
β00V

0
n (r) + γ

0
0Z

0
n (r)− U0n (r)

¢
dr,

we can notice that the two objective functions, Qn and Q0n, have identical functional
forms as functionals of

¡
β0, γ0, Vn (r)

0 , Sn (r)
0¢0 and ¡β0, γ0, V 0n (r)0 , S0n (r)0¢0 , respectively.

It follows, then, by Lemma 3 that

Q0n (·, ·) d= Qn (·, ·) .

3.1 Uniform Limit of the Objective Function Qn (β, γ)

In view of Lemma 3, it seems that Q (β) would be a natural candidate for the (uniform)
limit of Qn (β, γ) . The main difficulty we would face in proving this is that the function
sgn (x) is not continuous. In this case, the objective function Qn (β, γ) does not satisfy
the regularity conditions for Theorem 3.1 of Park and Phillips (2001) that establishes the
uniform convergence for a sample average of a regular function of a partial sum process.
First, Þnd the Þnite dimensional limit of the objective function Qn (β, γ) . DeÞne f :

D[0, 1]5 → R to be

f (x1 (r) , x2 (r) , x3 (r) , x4 (r) , x5 (r)) =

Z 1

0

sgn (x2 (r) + x4 (r)) sgn (x1 (r) + x3 (r)− x5 (r)) dr.

Let Cβ and C0 denote the sets of all the continuous time paths on [0,1] of Brownian
motions β0V (r) and β00V (r), respectively. Then, Cβ and C0 are subsets of C [0, 1] , the
set of all the continuous functions on [0, 1], and they are separable with respect to the
uniform topology endowed on the D[0, 1].
LetXn (r) =

¡
β00Vn (r) ,β

0Vn (r) , γ00Zn (r) , γ0Zn (r) , Un (r)
¢0
andX (r) =

¡
β00V (r) ,β

0V (r) ,0,0,0
¢
,

where 0 is the null function on [0,1]. From Lemma 3, we have

Xn (r)
a.s.→ X (r)

uniformly in r ∈ [0, 1]. Also, by deÞnition,

P∗ (X (r) ∈ C0 ×Cβ ×O×O×O) = 1,
where O = {0} .
For any sequence (x1n (r) , x2n (r) , x3n (r) , x4n (r) , x5n (r)) in D [0, 1]

5 that converges
to (x1 (r) , x2 (r) ,0,0,0) in C0 × Cβ × O × O × O uniformly in r ∈ [0, 1], by modifying
Lemma 12 in the Appendix, we may deduce that the functional f is continuous at all the
points in C0×Cβ ×O×O×O. Then, by applying the continuous mapping theorem, the
Þnite dimensional convergence of Qn (β, γ) to Q (β) follows. Summarizing this, we have
the following lemma:

Lemma 4 Suppose that Assumptions 1 and 2 hold. For any K-tuple ((β1, γ1) , ..., (βK , γK)) ,

(Qn (β1, γ1) , ..., Qn (βK , γK))
0 a.s.→ (Q (β1) , ..., Q (βK))

0
.

5



To establish consistency of an extremum estimator, we need a convergence stronger
than the Þnite dimensional convergence shown in Lemma 4. Before we introduce the
main result, the uniform convergence of the objective function, we introduce another
useful lemma. DeÞne

Tn (β, γ,M) = Qn (β, γ) 1

(
sup
r∈[0,1]

°°¡Vn (r)0 , Zn (r)0¢°° ≤M)
and

T (β,M) = Q (β) 1

(
sup
r∈[0,1]

kV (r)k ≤M
)
.

Lemma 5 Suppose that Assumptions 1 and 2 hold. For any given M > 0, as n→∞
sup

(β,γ)∈B×Γ
|Tn (β, γ,M)− T (β,M)| a.s.→ 0.

Now we establish the uniform convergence ofQn (β, γ) toQ (β) . Since |Qn (β, γ)| , |Q (β)| ≤
1, we have

sup
(β,γ)∈B×Γ

|Qn (β, γ)−Q (β)|

≤ sup
(β,γ)∈B×Γ

|Tn (β, γ,M)− T (β,M)|

+1

(
sup
r∈[0,1]

°°¡Vn (r)0 , Zn (r)0¢°° > M)+ 1( sup
r∈[0,1]

kV (r)k >M
)
.

Since supr∈[0,1]
°°¡Vn (r)0 , Zn (r)0¢°° = Oa.s. (1) , for any given ε > 0, we can choose a

constant M such that

lim sup
n→∞

P∗
(
sup
r∈[0,1]

°°¡Vn (r)0 , Zn (r)0¢°° > M) ≤ ε2

6
(5)

P∗
(
sup
r∈[0,1]

kV (r)k > M
)

≤ ε2

6
. (6)

By the Markov inequality and from (5) and (6), we deduce that

lim sup
n→∞

P∗
(

sup
(β,γ)∈B×Γ

|Qn (β, γ)−Q (β)| > ε
)

≤ lim sup
n→∞

P∗
(

sup
(β,γ)∈B×Γ

|Tn (β, γ,M)− T (β,M)| > ε

3

)

+
3

ε
lim sup
n→∞

P∗
(
sup
r∈[0,1]

°°¡Vn (r)0 , Zn (r)0¢°° > M)+ 3
ε
lim sup
n→∞

P∗
(
sup
r∈[0,1]

kV (r)k >M
)

≤ ε.

This shows that Qn (β, γ) converges in probability to Q (β) uniformly in β and γ. Sum-
marizing this, we have the following theorem.

Theorem 6 Under Assumptions 1 and 2, as n→∞
sup

(β,γ)∈B×Γ
|Qn (β, γ)−Q (β)| p→ 0.

6



The main reason that the limit function Q depends only on β and not on γ, is that the
score signal from the nonstationary variables dominates that from the stationary variables
(see Lemma 3).

3.2 IdentiÞcation of β0
Lemma 7 (a) Q (β) < 1 a.s. if β 6= β0. (b) Q (β) is continuous in β.
Lemma 7 shows that with probability one, Q (β) takes a value strictly less than one if

β 6= β0. On the other hand, when β = β0,

Q (β0) =

Z 1

0

sgn
¡
β00V (r)

¢2
dr = 1. (7)

Therefore, with probability one, the continuous function Q (β) has a unique maximum at
the true parameter β0. Furthermore, since the parameter set B is compact, for any δ > 0,
we can Þnd an ε > 0 such that

sup
β∈B s.t. kβ−β0k>δ

Q (β) < 1− ε a.s. (8)

From (7) and (8) , we deduce that under Assumptions 1 and 2, the coefficient β0 of the
nonstationary variable xt is identiÞed.
This identiÞcation result together with the nonidentiÞcation of γ0 in the previous

section can be compared to some of the well known results in the literature. In the
parametric nonstationary binary choice model studied by Park and Phillips (2000) where
the distribution of the model is known, all the coefficients of the nonstationary and the
stationary components are identiÞed and consistently estimable (see Remark 4 on page
1257 of Park and Phillips, 2000). However, when the distribution of the model is unknown
and it could be heterogeneous, under the regularity conditions in the paper, we can identify
only the normalized coefficient of the nonstationary regressors, β0.
On the other hand, when the data are from random samples, Manski (1985)4 found that

β0 is identiÞed under the assumption of quantile independence of ut and some restrictions
on the distribution of the regressors. The former restrictions exclude the regressors whose
distribution support is degenerated or Þnite. Compared to these, the coefficient of the
nonstationary covariates β0 is identiÞed without any quantile restriction on the conditional
distribution of ut. Crucial conditions used in identifying β0 are that ut does not have
stochastic trends (i.e., y∗t and xt are cointegrated), there is no-cointegration relation in
xt, and the error process generating xt, regressor zt, and the error ut should satisfy
the moment conditions in Assumption 15. The condition of no cointegration relation in
xt corresponds to the non-degeneracy condition in Assumption 2(a) of Manski (1985).
In view of the functional central limit theorem in Lemma 3(a), the distribution of the
standardized regressor xt√

n
has an unbounded continuous support in the limit.

3.3 Consistency of �β

Let �β
∗
and �γ∗ maximize Qn (β, γ) over the compact parameter set B×Γ. Then, from (8) ,

by the deÞnition of
³
�β
∗
, �γ∗
´
, and by Theorem 6, we have

P∗
n°°°�β∗ − β0°°° > δo

4Manski (1988) discusses more detailed conditions for identiÞcation of the binary choice model.
5Compared to this, notice that Manski (1985) imposes no restriction on the moments of the regressors
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≤ P∗
n
Q (β0)−Qn

³
�β
∗
, �γ∗
´
+Qn

³
�β
∗
, �γ∗
´
−Q

³
�β
∗´
> ε
o

≤ P∗
n
Q (β0)−Qn (β0, γ0) +Qn

³
�β
∗
, �γ∗
´
−Q

³
�β
∗´
> ε
o

≤ P∗
(

sup
(β,γ)∈B×Γ

|Qn (β,γ)−Q (β)| > ε
)

→ 0.

Therefore, it follows that in the probability space (Ω∗,F∗,P∗) ,
�β
∗ p→ β0.

Recall that Q0n (·, ·) d
= Qn (·, ·) and notice that �β∗ d

= �β.6 Therefore, on the original
probability space, we have

�β
p→ β0.

The following theorem summarizes this.

Theorem 8 Under Assumptions 1 and 2, the maximum score estimator �β is consistent.

4 Concluding Remarks

This paper studies the maximum score estimator of a nonstationary binary choice model
where explanatory variables include both stationary variables and nonstationary variables.
There are two major Þndings of the paper. First, we Þnd a set of restrictions under which
the coefficient of the nonstationary explanatory variables are identiÞed. Second, we show
that the maximum score estimator of the coefficient of the nonstationary variables is
consistent.
There are several important extensions we may consider for future projects. First, it

is important to Þnd sufficient conditions for the identiÞcation of the stationary compo-
nent coefficients γ0 and develop a consistent estimation procedure. Having a consistent
estimate of γ0 as well as a consistent estimate of β0 makes the study of the structure
analysis of the nonstationary model (1) more useful (for example, see Manski, 1988).
Second, in order to perform a test for restrictions on the parameters, we need to derive
the limiting distribution of the maximum score estimator. This is a considerably harder
problem mainly because the score objective function is non-differentiable. To cope with
this difficulty, smoothing the objective function as in Horowitz (1992) would be a natural
extension.

5 Appendix: Technical Proofs

5.1 Appendix A: Useful Results

Lemma 9 Let W (r) be a standard Brownian motion. DeÞne A+t =
R t
0 1 {W (r) ≥ 0} dr

and A−t =
R t
0 1 {W (r) < 0}dr. Then, the laws of A+1 and A−t are the Arcsine law on [0,1]

whose density is 1

π
√
x(1−x) on [0,1] with respect to the Lebesgue measure.

6We have �β
∗ d
= �β because the functional forms of Qn and Q0n are identical and in conse-

quence, the two argmaxes
³
�β
∗
, �γ∗

´
and

³
�β, �γ

´
have identical functional forms in

¡
Vn (r)

0 , Sn (r)0
¢0 and¡

V 0n (r)
0 , S0n (r)

0¢0 , respectively.
8



Proof See Theorem 2.7 in Revuz and Yor (1999). ¥

Lemma 10 Suppose that B1 (r) and B2 (r) are two standard Brownian motions that are
independent of each other. Then,

−1 <
Z 1

0

sgn (B1 (r)) sgn (B2 (r)) dr < 1

almost surely.

Proof
DeÞne A+11 =

R 1
0 1 {0 ≤ B1 (r)} dr and A+21 =

R 1
0 1 {0 ≤ B2 (r)} dr.7 First, suppose thatZ 1

0

sgn (B1 (r)) sgn (B2 (r)) dr = 1

with a positive probability. Then, with a positive probability it follows that sgn (B1 (r)) =
sgn (B2 (r)) for almost all 0 ≤ r ≤ 1 in Lebesgue measure, which implies that

A+11 = A
+
21 (9)

with a positive probability. However, by Lemma 9 and by the independence of B1 (r) and
B2 (r) , the joint density function of A+11 and A

+
21 is the product of the marginal densities

of A+11 and A
+
21 that is continuous with respect to the product of the Lebesgue measures.

So, the event that
A+11 = A

+
21

occurs with zero probability, which contradicts to (9). Therefore,
R 1
0
sgn (B1 (r)) sgn (B2 (r)) dr <

1 almost surely. Next, using similar arguments, we can show that−1 < R 1
0
sgn (B1 (r)) sgn (B2 (r)) dr

almost surely. In consequence, we have

−1 <
Z 1

0

sgn (B1 (r)) sgn (B2 (r)) dr < 1

almost surely, as required. ¥

The implication of the lemma is that two independent Brownian motion sample paths
do not stay on the same side, nor on the opposite sides for all r ∈ (0, 1].

Lemma 11 Let W (r) be a standard Brownian motion. For any ε > 0, W (r) changes
sign inÞnitely many times in the time interval [0, ε].

Proof See Problem 7.18 on page 94 of Karatzas and Shreve (1991). ¥

Lemma 12 Let B (r) be a Brownian motion with continuous paths on time interval [0,1].
Let C0[0, 1] be the collection of all the time paths of B (r) . Then, for any yn (r) ∈ D[0, 1]
and y (r) ∈ C0[0, 1] with

sup
r∈[0,1]

|yn (r)− y (r)|→ 0, (10)

we have Z 1

0

sgn (yn (r)) dr→
Z 1

0

sgn (y (r)) dr

as n→∞.
7Notice that

R 1
0 1 {B1 (r) = 0} dr =

R 1
0 1 {B2 (r) = 0} dr = 0 by Proposition 3.12 of Revuz and Yor

(1999). Thus, it also holds that A+11 =
R 1
0 1 {0 < B1 (r)} dr and A+21 =

R 1
0 1 {0 < B2 (r)} dr.

9



Proof First, notice that the limit of

lim
η→0

1

2η

Z 1

0

1 {|B (r)| ≤ η}dr

exists because the local time of a Brownian motion is well deÞned. From this, for any
ε > 0, we can choose η > 0 such thatZ 1

0

1 {|y (r)| ≤ η} dr < ε

2
.

Also, from (10) , we can choose n0 such that whenever n ≥ n0,

sup
r∈[0,1]

|yn (r)− y (r)| < η

2
. (11)

Notice that ¯̄̄̄Z 1

0

sgn (yn (r)) dr −
Z 1

0

sgn (y (r)) dr

¯̄̄̄
≤

Z 1

0

|sgn (yn (r))− sgn (y (r))| dr (12)

≤
Z 1

0

|sgn (yn (r))− sgn (y (r))| 1 {|y (r)| > η} dr

+2

Z 1

0

1 {|y (r)| ≤ η}dr.

If n ≥ n0, then, Z 1

0

|sgn (yn (r))− sgn (y (r))| 1 {|y (r)| > η}dr = 0

due to (11) . Also, we have Z 1

0

1 {|y (r)| ≤ η} dr < ε

2
.

Therefore, whenever n ≥ n0, we have¯̄̄̄Z 1

0

sgn (yn (r)) dr −
Z 1

0

sgn (y (r)) dr

¯̄̄̄
< ε,

and we complete the proof. ¥

Let Vn (r) , Zn (r) , and V (r) be the processes in Lemma 3. Suppose that Ω∗0 ⊂ Ω∗ is a
set with P∗ (Ω∗0) = 1 in which Vn (r)→ V (r) and Zn (r)→ 0 uniformly in r and the local
time of a Brownian motion exists. DeÞne α =

¡
β0, γ0

¢0
and �Vn (r) =

¡
Vn (r)

0
, Zn (r)

0¢0
.

The following two lemmas hold for any Þxed ω∗ ∈ Ω∗0.

Lemma 13 Suppose ᾱ =
³
β̄
0
, γ̄0
´0
∈ B× Γ and ε > 0 are given. Fix ω∗ ∈ Ω∗0. Then, we

can choose κ (ω∗, ᾱ, ε) > 0 such that

lim sup
n→∞

Z 1

0

1
n¯̄̄
ᾱ0 �Vn (r) (ω∗)

¯̄̄
< κ (ω∗, ᾱ, ε)

o
dr < ε.

10



Proof. From the existence of the local time of Brownian motion β̄0V (r) , for the given
ω∗, ᾱ, and ε > 0, we can choose 2κ (ω∗, ᾱ, ε) such thatZ 1

0

1
n¯̄̄
β̄
0
V (r) (ω∗)

¯̄̄
< 2κ (ω∗, ᾱ, ε)

o
dr < ε.

LetMγ = supγ∈Γ kγk . Since the parameter set Γ is compact on Rm, Mγ is Þnite. Recalling
that

°°β̄°° = 1, we have ¯̄̄
ᾱ0 �Vn (r) (ω∗)− β̄0V (r) (ω∗)

¯̄̄
=

¯̄̄
β̄
0
Vn (r) (ω

∗) + γ̄0Zn (r) (ω∗)− β̄0V (r) (ω∗)
¯̄̄

≤
¯̄̄
β̄
0
Vn (r) (ω

∗)− β̄0V (r) (ω∗)
¯̄̄
+ |γ̄0Zn (r) (ω∗)|

≤ kVn (r) (ω∗)− V (r) (ω∗)k+ sup
γ∈Γ

kγk kZn (r) (ω∗)k

≤ kVn (r) (ω∗)− V (r) (ω∗)k+Mγ kZn (r) (ω∗)k
→ 0

uniformly in r. So, we can choose n0 (ω∗, ᾱ, ε) such that

sup
r∈[0,1]

¯̄̄
ᾱ0 �Vn (r) (ω∗)− β̄0V (r) (ω∗)

¯̄̄
< κ (ω∗, ᾱ, ε)

whenever n ≥ n0 (ω∗, ᾱ, ε) . In consequence, we haveZ 1

0

1
n¯̄̄
ᾱ0 �Vn (r) (ω∗)

¯̄̄
< κ (ω∗, ᾱ, ε)

o
dr

≤
Z 1

0

1
n¯̄̄
β̄
0
V (r) (ω∗)

¯̄̄
< 2κ (ω∗, ᾱ, ε)

o
dr < ε (13)

whenever n ≥ n0 (ω∗, ᾱ, ε) , and we have the required result. ¥

Lemma 14 Suppose that M > 0 and ε > 0 are given. For any Þxed ω∗ ∈ Ω∗0, it
is possible to choose n1 (ω∗, ε) and δ (ω∗, ε,M) such that whenever n ≥ n1 (ω

∗, ε) and°°°¡β0, γ0¢− ³β̄0, γ̄0´°°° < δ (ω∗, ε,M) , we have
¯̄
Qn (β, γ)−Qn

¡
β̄, γ̄

¢¯̄
1

(
sup
r∈[0,1]

°°¡Vn (r)0 , Zn (r)0¢°° ≤M) < 4ε.
Proof. Recall the notation α =

¡
β0, γ0

¢0
and �Vn (r) =

¡
Vn (r)

0 , Zn (r)
0¢0 .

Step 1: First we Þx ᾱ =
³
β̄
0
, γ̄0
´0
∈ B× Γ. Notice that

¯̄
Qn (β, γ)−Qn

¡
β̄, γ̄

¢¯̄
1

(
sup
r∈[0,1]

°°¡Vn (r)0 , Zn (r)0¢°° ≤M)

≤
µZ 1

0

¯̄̄
sgn

³
α0 �Vn (r)

´
− sgn

³
ᾱ0 �Vn (r)

´¯̄̄
dr

¶
1

(
sup
r∈[0,1]

°°°�Vn (r)°°° ≤M) .

11



Now choose n1 = n0 (ω
∗, ᾱ, ε) and κ0 = κ (ω∗, ᾱ, ε) in Lemma 13. Then, for the Þxed

ω∗ ∈ Ω∗0, if n ≥ n1,µZ 1

0

¯̄̄
sgn

³
α0 �Vn (r)

´
− sgn

³
ᾱ0 �Vn (r)

´¯̄̄
dr

¶
1

(
sup
r∈[0,1]

°°°�Vn (r)°°° ≤M)

≤
µZ 1

0

¯̄̄
sgn

³
α0 �Vn (r)

´
− sgn

³
ᾱ0 �Vn (r)

´¯̄̄
1
n¯̄̄
ᾱ0 �Vn (r)

¯̄̄
≥ κ0

o
dr

¶
1

(
sup
r∈[0,1]

°°°�Vn (r)°°° ≤M)

+2

Z 1

0

1
n¯̄̄
ᾱ0 �Vn (r)

¯̄̄
< κ0

o
dr

≤
µZ 1

0

¯̄̄
sgn

³
α0 �Vn (r)

´
− sgn

³
ᾱ0 �Vn (r)

´¯̄̄
1
n¯̄̄
ᾱ0 �Vn (r)

¯̄̄
≥ κ0

o
dr

¶
1

(
sup
r∈[0,1]

°°°�Vn (r)°°° ≤M)+ 2ε,
where the Þrst inequality holds since |sgn (x)− sgn (y)| ≤ 2 and the last inequality holds
by Lemma 13.
Choose

δ (ω∗, ᾱ, ε,M) <
κ0
2M

.

Suppose that kα− ᾱk < δ (ω∗, ᾱ, ε,M) . Then, for the Þxed ω∗ ∈ Ω∗0, n ≥ n1 implies that

sup
r∈[0,1]

¯̄̄
α0 �Vn (r)− ᾱ0 �Vn (r)

¯̄̄
1

(
sup
r∈[0,1]

°°°�Vn (r)°°° ≤M)

≤ kα− ᾱk sup
r∈[0,1]

°°°�Vn (r)°°° 1( sup
r∈[0,1]

°°°�Vn (r)°°° ≤M)

≤ δ (ω∗, ᾱ, ε,M) sup
r∈[0,1]

°°°�Vn (r)°°° 1( sup
r∈[0,1]

°°°�Vn (r)°°° ≤M)
<

κ0
2
,

and, in consequence, if n ≥ n1,µZ 1

0

¯̄̄
sgn

³
α0 �Vn (r)

´
− sgn

³
ᾱ0 �Vn (r)

´¯̄̄
1
n¯̄̄
ᾱ0 �Vn (r)

¯̄̄
≥ κ0

o
dr

¶
1

(
sup
r∈[0,1]

°°°�Vn (r)°°° ≤M) = 0
for the Þxed ω∗ ∈ Ω∗0 because α0 �Vn (r) and ᾱ0 �Vn (r) have the same sign when

¯̄̄
ᾱ0 �Vn (r)

¯̄̄
≥

κ0 with n > n1.
Thus, if n ≥ n0 (ω∗, ᾱ, ε) and kα− ᾱk < δ (ω∗, ᾱ, ε,M) ,

|Qn (α)−Qn (ᾱ)| 1
(
sup
r∈[0,1]

°°°�Vn (r)°°° ≤M) < 2ε. (14)

Step 2: For each α =
¡
β0, γ0

¢0 ∈ B × Γ, we choose n1 (ω∗,α, ε) and δ (ω∗,α, ε,M). Let
S (α, r) denote the open ball centered at α with radius r. Since the parameter set B× Γ
is compact, we can choose a Þnite number of α0ls, say L, such that

∪Ll=1S
µ
αl,
δ (ω∗,α0l, ε,M)

2

¶
⊃ B× Γ.
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For notational simplicity, write δ (ω∗,αl, ε,M) = δl. Set

δ (ω∗, ε,M) = min
1≤l≤L

½
δ1
2
, ...,

δL
2

¾
and

n1 (ω
∗, ε) = max

1≤l≤L
{n0 (ω∗,α1, ε) , ..., n0 (ω∗,αL, ε)} .

Notice that for any kα− ᾱk ≤ δ (ω∗, ε,M) , we can Þnd an αl such that
kα− αlk ≤ δ (ω∗,αl, ε,M)

and
kαl − ᾱk ≤ δ (ω∗,αl, ε,M) .

Therefore, for Þxed ω∗ ∈ Ω∗0, if n ≥ n1 (ω∗, ε) and kα− ᾱk ≤ δ (ω∗, ε,M) , we have

|Qn (α)−Qn (ᾱ)| 1
(
sup
r∈[0,1]

°°°�Vn (r)°°° ≤M)

≤ |Qn (α)−Qn (αl)| 1
(
sup
r∈[0,1]

°°°�Vn (r)°°° ≤M)

+ |Qn (ᾱ)−Qn (αl)| 1
(
sup
r∈[0,1]

°°°�Vn (r)°°° ≤M)
≤ 4ε,

where the last inequality holds by (14) and we complete the proof. ¥

5.2 Appendix B: Proofs of Main Results

Proof of Lemma 3
The proof of Part (a) is quite similar to the proof of Lemma 1(c) in Park and Phillips

(2000). First, by Theorem 3.4 of Phillips and Solo (1992), we have

V 0n (r)⇒ V (r)

in D[0, 1]k with the uniform metric on the original probability space. Also, for any ε > 0,

P
½
sup
1≤t≤n

kstk√
n
> ε

¾
≤ 1

nε2

nX
t=1

E
h
kstk2 1

n
kstk2 > nε2

oi
≤ 1

ε2
sup
1≤t≤n

E
h
kstk2 1

n
kstk2 > nε2

oi
→ 0 as n→∞

because

sup
1≤t≤n

E
h
kstk2 1

n
kstkδ > n δ

2 εδ
oi
≤ sup1≤t≤nE kstk2+δ

n
δ
2 εδ

0 as n→∞

by Assumption 1(iv). Thus,
S0n (r)→p 0

13



in D[0, 1]m+1 with the uniform metric on the original probability space. From this, we
have the following joint limit µ

V 0n (r)
S0n (r)

¶
⇒
µ
V (r)
0

¶
.

The required result follows by the representation theorem in Pollard (1984, pp 71-72). ¥

Proof of Lemma 7
Part (a).
For notational convenience, write

Vβ (r) = β
0V (r)

and
V0 (r) = β

0
0V (r) .

Recall that β0 6= 0 and Σv is positive deÞnite (see model (1) and Assumption 1). For
β 6= β0, using Lemma 3.1 in Phillips (1989), we decompose Vβ (r) as

Vβ (r) =
β0Σvβ0
β00Σvβ0

V0 (r) +Σ
1/2
ββ.β0

W (r) , (15)

where W (r) is a standard Wiener process in the probability space (Ω∗,F∗,P∗) that is
independent of V0 (r) and Σββ.β0 = β

0Σvβ − (β
0Σvβ0)

2

β00Σvβ0
> 0.

Case 1: When β0Σvβ0 = 0.
In this case, V0 (r) is independent of Vβ (r) . Then, by Lemma 10, we have

Q (β) =

Z 1

0

sgn (Vβ (r)V0 (r)) dr < 1,

and we have the required result. ¥

Case II: When β0Σvβ0 < 0.
Using the decomposition in (15) , we may write

Q (β) =

Z 1

0

sgn (Vβ (r)V0 (r)) dr

= −
Z 1

0

sgn
n
V0 (r)

2 + γβV0 (r)W (r)
o
dr,

where γβ =
³
β0Σvβ0
β00Σvβ0

´−1
Σ
1/2
ββ.β0

< 0, and the last equality holds because β0Σvβ0 < 0. To
have the required result, it is enough to show thatZ 1

0

sgn
n
V0 (r)

2 + γβV0 (r)W (r)
o
dr > −1 (16)

almost surely.
For this, notice that

sgn
n
V0 (r)

2 + γβV0 (r)W (r)
o
= −1
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if and only if,

0 < V0 (r) < −γβW (r) when W (r) > 0

−γβW (r) < V0 (r) < 0 when W (r) < 0.

Then, inequality (16) follows if we show thatZ 1

0

1
©
0 < V0 (r) < −γβW (r)

ª
1 {W (r) > 0}dr

+

Z 1

0

1
©−γβW (r) < V0 (r) < 0

ª
1 {W (r) < 0}dr

< 1 with probability one.

The above inequality follows becauseZ 1

0

1
©
0 < V0 (r) < −γβW (r)

ª
1 {W (r) > 0}dr

+

Z 1

0

1
©−γβW (r) < V0 (r) < 0

ª
1 {W (r) < 0} dr

≤
Z 1

0

1 {0 < V0 (r)} 1 {W (r) > 0} dr +
Z 1

0

1 {0 > V0 (r)} 1 {W (r) < 0}dr
< 1 almost surely,

where the last inequality holds by Lemma 10, and we have the required result. ¥

Case III: When β0Σvβ0 > 0.
Again, using the decomposition of Vβ (r) in (15) , we write

Q (β) =

Z 1

0

sgn (Vβ (r)V0 (r)) dr

=

Z 1

0

sgn

µ
V0 (r)

µ
1

γβ
V0 (r) +W (r)

¶¶
dr,

where γβ =
³
β0Σvβ0
β00Σvβ0

´−1
Σ
1/2
ββ.β0

> 0. Observe that

Q (β) = 1

if and only if, for all r ∈ [0, 1],

W (r) ≥ − 1

γβ
V0 (r) ⇔ V0 (r) ≥ 0. (17)

Now we show that (17) does not occur with probability one.
For this, Þrst notice that the set

Z =

½
r ∈ [0, 1] : W (r) = − 1

γβ
V0 (r)

¾
is almost surely a non-empty closed set without an isolation point and has zero Lebesgue
measure. (Apply Proposition 3.12 on page 109 of Revuz and Yor to Brownian motion
W (r) + 1

γβ
V0 (r) .)
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Choose r0 ∈ Z∩(0, 1) .Without loss of generality, we assume that V0
¡
r0
¢
> 0 because

the set {r ∈ [0, 1] : V0 (r) = 0} has zero Lebesgue measure. Since the sample path of V0 (r)
is continuous, we can choose an interval around r0 with length 2ε such that V0

¡
r0
¢
> 0

for all r ∈ ¡r0 − ε, r0 + ε¢ .
Now suppose that (17) is true with probability one. Then, W (r) + 1

γβ
V0 (r) ≥ 0 for

r ∈ ¡r0 − ε, r0 + ε¢ with probability one. This cannot occur with probability one because
W
¡
r0
¢
+ 1
γβ
V0
¡
r0
¢
= 0 by deÞnition and, from Lemma 11, W (r)+ 1

γβ
V0 (r) changes sign

inÞnitely often in the interval
¡
r0 − ε, r0 + ε¢ with probability one. Therefore, (17) does

not occur with probability one and so Q (β) < 1 almost surely. ¥

Part (b). Notice that for any sequence βn → β, it follows that

|Q (βn)−Q (β)|

=

¯̄̄̄Z 1

0

sgn
¡
β00V (r)

¢
sgn

¡
β0nV (r)

¢
dr −

Z 1

0

sgn
¡
β00V (r)

¢
sgn

¡
β0V (r)

¢
dr

¯̄̄̄
≤ 2

Z 1

0

¯̄
sgn

¡
β0nV (r)

¢− sgn ¡β0V (r)¢¯̄ dr
→ 0,

where the last convergence holds by the convergence result of (12) in the proof of Lemma
12. ¥

Proof of Lemma 5
Notice from the uniform convergence of (Vn (r) , Zn (r))

a.s.→ (V (r) ,0) , we have

sup
r∈[0,1]

°°¡Vn (r)0 , Zn (r)0¢°° a.s.→ sup
r∈[0,1]

kV (r)k .

Combining this with Lemma 4, for any Þxed M > 0, we may deduce the Þnite dimen-
sional convergence of Tn (β,γ,M) to T (β,M) . Also, the truncated process Tn (β, γ,M) is
asymptotically uniformly equicontinuous in (β, γ) by Lemma 14. Using the conventional
arguments with the assumption that the parameter set is compact, the required result
follows. ¥
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