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1 Introduction
In the past decade, much research has been conducted on panels in which both
the cross-sectional and time dimensions are large. Testing for a unit root in such
panels has been a major focus of this research. For example, Quah (1994), Levin
et al (2002), Im et al (1997), Maddala and Wu (1999), and Choi (2001) have
all proposed various tests. These studies derived the limit theory for the tests
under the null hypothesis of a common panel unit root and power properties
were investigated by simulation.
The asymptotic local power properties of some panel unit root tests have

become known quite recently. Moon and Perron (2003a) show that without
incidental trends in the panel, their panel unit root test which is based on a
t-ratio type statistic has significant asymptotic local power in a neighborhood
of unity that shrinks to the null at the rate of n−1/2T−1 (where n and T denote
the size of the cross-section and time dimensions, respectively). However, in
the presence of incidental trends, the t-ratio type test statistic constructed from
ordinary least squares (OLS) detrended data has no power (beyond size) in a
n−κT−1- neighborhood of unity with κ > 1/6. For a panel with incidental trends,
Ploberger and Phillips (2002) proposed an optimal invariant panel unit root
test that maximizes average local power. They show that the optimal invariant
test has asymptotic local power in a neighborhood of unity that shrinks at the
rate n−1/4T−1, thereby substantially dominating the t-ratio test when there are
incidental trends.
The present study makes three contributions. First, the local asymptotic

power envelope of the panel unit root testing problem is derived for three sce-
narios: (i) with no fixed effects; (ii) with fixed effects that are parameterized
by heterogeneous intercept terms (deemed incidental parameters); and (iii) with
fixed effects that are parameterized by heterogeneous linear deterministic trends
(deemed incidental trends). For cases (ii) and (iii) we restrict the class of tests
to be invariant with respect to the incidental parameters and trends. We show
that in cases (i) and (ii), the power envelope is defined within n−1/2T−1- neigh-
borhoods of unity and that it depends on the first two moments of the local
to unity parameters. On the other hand, in case (iii), the power envelope is
defined within n−1/4T−1- neighborhoods of unity and it depends on the first
four moments of the local to unity parameters.
Second, we derive the asymptotic local power of some existing panel unit

root tests and compare these to the power envelope. For case (i), we investi-
gate the t-ratio statistics studied by Quah (1994), Levin et al, and Moon and
Perron (2003a). For case (ii), we investigate a modified t-ratio statistic that is
asymptotically equivalent to the test proposed by Levin et al. For case (iii), we
compare the optimal invariant test proposed by Ploberger and Phillips (2002)
and the LM test proposed by Moon and Phillips (2002). First, we show that in
all three cases the existing tests do not achieve the optimal power. Next, when
the alternative hypothesis is homogeneous across individuals, it is shown that
some tests (the t− test in case (i) and the optimal invariant test by Ploberger
and Phillips (2002) in cases (ii) and (iii) ) do achieve the power envelope and
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are uniformly most powerful.
Third, we propose a simple point optimal invariant panel unit root test for

each case. These tests are optimal when the alternative hypothesis is homoge-
neous, in contrast to point optimal unit root tests for time series (Elliot et al.,
1996).
The paper is organized as follows. Section 2 lays out the model, the hypothe-

ses to test, and the assumptions maintained throughout the paper. Section 3
studies the model where there are no fixed effects (or fixed effects are known),
develops the power envelope, gives a point optimal test and performs some power
comparisons. Sections 4 and 5 perform similar analyses for panel models with
fixed effects and incidental trends. Section 6 reports some simulations compar-
ing the finite sample properties of the main tests studied in Section 5. Section
7 concludes and the Appendix contains technical derivations and proofs.

2 Model
The observed panel zit is assumed to be generated by the following component
model

zit = b0igt + yit (1)

yit = ρiyit−1 + uit, i = 1, ..., n; t = 1, ..., T,

where uit is a mean zero error, gt = (1, t)
0 , and bi = (b0i, b1i)

0.
The focus of interest is the problem of testing for the presence of a common

unit root in the panel against local alternatives when both n and T are large.
For a local alternative specification we assume that

ρi = 1−
θi
nκT

for some constant κ > 0, (2)

where θi is a sequence of iid random variables. The main goal of the paper is
to find efficient tests for the null hypothesis

H0 : θi = 0 a.s. (i.e., ρi = 1) for all i, (3)

against the alternative

H1 : θi 6= 0 (i.e., ρi 6= 1) for some i0s. (4)

A common special case of interest for the alternative hypothesis H1 is

H2 : θi = θ > 0 for all i, (5)

where the local to unity coefficients take on a common value θ > 0 for all i. In
this case, the series are then locally stationary, that is ρi = ρ = 1− θ

nκT < 1 for
all i.
In (1) the nonstationary panel zit has two different types of trends. The

first component b0igt is a deterministic linear trend that is heterogeneous across
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individuals i. This component characterizes individual effects in the panel. The
second component yit is a stochastic trend or near unit-root process with ρi
close to unity.
The following sections look at three different cases. In the first case b0i

and b1i are observable, so that yit is observable. This is essentially a situation
where there are no fixed effects in the panel. The second case arises when
b0i are unobserved but b1i are observable. In this case, the panel data zit
contain fixed effects that are parameterized by heterogeneous intercept terms
b0i, which are incidental parameters to be estimated. The third case arises
when both b0i and b1i are unobserved, so the panel contains fixed effects that
are parameterized by heterogeneous linear deterministic trends, b0i+ b1it where
both sets of parameters b0i and b1i are to be estimated.
Before proceeding, we introduce the following notation. Define

zt = (z1t, ...., znt)
0 , yt = (y1t, ..., ynt)

0 , ut = (u1t, ...., unt)
0

Z = (z1, ...., zT ) , Y = (y1, ...., yT ), Y−1 = (y0, y1, ..., yT−1) , U = (u1, ..., uT ) ,

so the (i, t)th elements of Z, Y, Y−1, and U are zit, yit, yit−1, and uit, respectively.
Define the T− vectors G0 = (1, ...., 1)0 , G1 = (1, 2, ..., T )0 , set G = (G0, G1) =
(g1, ..., gT )

0 , and define

β0 = (b01, ...., b0n)
0 , β1 = (b11, ...., b1n)

0 ,

β = (β0, β1) = (b1, ..., bn)
0 .

Let Zi, Y i, Y −1,i, and U i denote the transpose of the ith row of Z, Y, Y−1, and
U, respectively, and write the model in matrix form as

Z = βG0 + Y,

Y = ρY−1 + U,

where ρ = diag (ρ1, ..., ρn) .

Assumption 1 uit ∼ iid
¡
0, σ2

¢
with finite fourth moment for i = 1, 2...., n

and over t = 1, 2, ..., T.

Assumption 2 The initial observations yi0 are iid with E |yi0|ν <∞ for some
ν > 2 and are independent of uit, t ≥ 1 for all i.

Assumption 3 1
T +

1
n +

n3/4

T → 0.

Assumption 1 imposes a restrictive error structure that will often be unreal-
istic. The main reason for using it here is to facilitate analytical derivations and
focus on more essential elements in power calculations. In Section 4 we briefly
discuss how it may be relaxed.
The error variance σ2 is usually unknown. Most tests depend on suitable

estimates of σ2 and, in what follows, we may replace σ2 with any estimator σ̂2

that is consistent under both the null and alternative hypotheses. An example
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of such an estimator is provided in Moon and Phillips (2003). They show that

σ̂2−σ2 = Op

³
1√
T
max

³
1√
n
, 1√

T

´´
, where σ̂2 = 1

nT tr (ê
0ê) and ê is the matrix of

residuals from a pooled autoregression on demeaned or detrended data1 . For our
purpose in this paper, it is convenient to make the following generic assumption
about the variance estimate σ̂2.

Assumption 4 σ̂2 − σ2 = Op

³
1√
T
max

³
1√
n
, 1√

T

´´
.

3 Without Fixed Effects
This section investigates the model in which b0igt is observable or equivalently
that gt = 0 and yit is observable. We consider local neighborhoods of unity
that shrink at the rate of 1

n1/2T
and one sided alternatives, as indicated in the

following assumptions.

Assumption 5 κ = 1/2 in (2).

Assumption 6 θi is a sequence of iid random variables on a non-negative
bounded support [0,Mθ] for some Mθ ≥ 0.

Let µθ,k = E
³
θki

´
. The assumption of a bounded support for θi is made for

convenience, and could be relaxed at the cost of stronger moment conditions.
It is also convenient to assume that the θi are identically distributed, and this
assumption could be relaxed as long as cross sectional averages of the moments
1
n

Pn
i=1E

³
θki

´
have limits like µθ,k.

According to Assumption 6, θi ≥ 0 for all i, so that ρi ≤ 1. In this case, the
null hypothesis of a unit root in (3) is equivalent to µθ,1 = 0 or Mθ = 0 (i.e.
θi = 0 a.s.), and the alternative hypothesis in (7) implies µθ,1 > 0. Hence, in
this section we set the hypotheses in terms of the first moment θi as follows:

H0 : µθ,1 = 0, (6)

and
H1 : µθ,1 > 0. (7)

To test these hypotheses, Moon and Perron (2003a) propose t - ratio tests
based on a modified pooled OLS estimator of the autoregressive coefficient and
show that they have significant asymptotic local power in neighborhoods of
unity shrinking at the rate 1√

nT
. In this section we first derive the (asymptotic)

power envelope and show that the power function of a point optimal test for H0
achieves the envelope for the hypotheses above. We then derive compare the
asymptotic local power of this point-optimal test with that of the Moon-Perron
test.

1See Lemma 2 of Moon and Phillips (2003).
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3.1 Power Envelope

The power envelope is found by computing the upper bound of the power of all
point optimal tests for each local alternative. To proceed, we define

ρci = 1−
ci

n1/2T
,

where ci is an iid sequence of random variables on [0,Mc] for some Mc > 0.
Denote by µc,k the k

th raw moment of ci, i.e., µc,k = E
¡
cki
¢
. Let

C = diag (c1, ..., cn) (8)

and
∆C = diag

¡
1− ρciL

¢
, (9)

where L denote the lag operator. Define

∆CY = (y0,∆Cy1...,∆Cyt, ...,∆CyT ) .

so that for t ≥ 1, the (i, t)th element of ∆CY is yit− yit−1+
ci

n1/2T
yit−1, a quasi

difference of yit. For notational simplicity, let ∆ = ∆0.
Define

VnT (C) =
1

σ̂2
£
tr
¡
∆CY (∆CY )

0¢− tr(∆Y (∆Y )
0
)
¤
− 1
2
µc,2.

The statistic VnT (C) is the (Gaussian) likelihood ratio statistic of the null hy-
pothesis ρi = 1 against an alternative hypothesis ρi = ρci for i = 1, ..., n. Ac-
cording to the Neyman-Pearson lemma, rejecting the null hypothesis for small
values of VnT (C) is the most powerful test of the null hypothesis H0 against
the alternative hypothesis ρi = ρci .When the alternative hypothesis is given by
H1, the test is a point optimal test (see, e.g., King (1988)). Let ΨnT (C) be the
test that rejects H0 for small values of VnT (C).
Since ∆yit = − θi

n1/2T
yit−1 + uit under Assumption 5,

VnT (C)

=
1

σ̂2

nX
i=1

"
y2i0 +

TX
t=1

(∆ciyit)
2

#
− 1

σ̂2

TX
i=1

"
y2i0 +

TX
t=1

(∆yit)
2

#
− 1
2
µc,2

=
2

n1/2T σ̂2

nX
i=1

ci

TX
t=1

∆yityit−1 +
1

nT 2σ̂2

nX
i=1

c2i

TX
t=1

y2it−1 −
1

2
µc,2

= − 2

nT 2σ̂2

nX
i=1

ciθi

TX
t=1

y2it−1 +
2

n1/2T σ̂2

nX
i=1

c2i

TX
t=1

uityit−1

+
1

nT 2σ̂2

nX
i=1

c2i

TX
t=1

y2it−1 −
1

2
µc,2.
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Direct calculation shows that under Assumptions 1 — 4,

− 2

nT 2σ̂2

nX
i=1

TX
t=1

ciθiy
2
it−1 → p −E (ciθi) ,

1

nT 2σ̂2

nX
i=1

c2i

TX
t=1

y2it−1 → p
1

2
µc,2,

and
2

n1/2T σ̂2

nX
i=1

ci

TX
t=1

uityit−1 ⇒ N
¡
0, 2µc,2

¢
,

thereby giving the following result.

Theorem 7 Suppose that Assumptions 1 — 6 hold. Then,

VnT (C)⇒ N
¡
−E (ciθi) , 2µc,2

¢
.

The asymptotic critical values of the test ΨnT (C) can be readily computed.
Let z̄α denote the (1 − α)− quantile of the standard normal distribution, i.e.,
P (Z ≤ −z̄α) = α, where Z ∼ N (0, 1) . Then, the size α asymptotic critical
value ψ (C, α) of the test ΨnT (C) is

ψ (C, α) = −
q
2µc,2z̄α,

and its asymptotic local power is

Φ

Ã
E (ciθi)p
2µc,2

− z̄α

!
, (10)

where Φ (x) is the cumulative distribution function of Z.
>From (10), it is easy to find the power envelope, i.e., the values of ci for

which power is maximized. By the Cauchy-Schwarz inequality

Φ

Ã
E (ciθi)p
2µc,2

− z̄α

!
≤ Φ

Ãr
µθ,2
2
− z̄α

!
,

and the upper bound of the power Φ
µq

µθ,2
2 − z̄α

¶
is achieved with ci = θi.

Then, by the Neyman-Pearson lemma, Φ
µq

µθ,2
2 − z̄α

¶
is the power envelope.

We have the following theorem.

Theorem 8 Assume that the trends b0igt in (1) are known. Suppose that As-
sumptions 1 — 6 hold. Then, the power envelope for testing for H0 in (3) against

H1 in (4) is Φ
µq

µθ,2
2 − z̄α

¶
, where µθ,2 = E

¡
θ2i
¢
and z̄α is the (1−α)− quan-

tile of the standard normal distribution.

Note that a necessary condition for attaining the power envelope is ci = θi
a.s., which in turn requires that the support of ci be the same as the support
of θi, i.e., Mc =Mθ.
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3.2 Power Comparison

3.2.1 The t− ratio Test

We start by investigating the t− ratio test of Quah (1994), Levin et al (2002),
and Moon and Perron (2003a), which is based on the pooled OLS estimator2.
Let

ρ̂ =

Pn
i=1

PT
t=1 yityit−1Pn

i=1

PT
t=1 y

2
it−1

,

be the pooled OLS estimator and the corresponding t statistic

t =
ρ̂− 1q

σ̂2Pn
i=1

PT
t=1 y

2
it−1

.

Under the conditions assumed above, we have

t⇒ N

µ
−
µθ,1√
2
, 1

¶
.

The power of the t test with size α is then

Φ

µ
µθ,1√
2
− z̄α

¶
. (11)

Remarks

(a) By the Cauchy-Schwarz inequality, it is straightforward to show that

Φ

µ
µθ,1√
2
− z̄α

¶
≤ Φ

Ãr
µθ,2
2
− z̄α

!
. (12)

In view of (12) , the t ratio test achieves optimal power only when the
alternative is homogeneous as in H2, that is when θi = θ a.s., so that

E (θi) =
q
E
¡
θ2i
¢
. Otherwise, the power of the t ratio test is strictly less

than the optimal power. This implies that t− ratio test is uniformly most
powerful test for testing H0 against H2 but not against H1. The result
is not surprising since the t ratio test is constructed based on the pooled
OLS estimator and pooling is efficient under the homogeneous alternative.

(b) Notice from (10) that the asymptotic local power envelope is determined
by µθ,1, the mean of the local to unity parameters θi. In the given formu-
lation, the local alternative is restricted to be one sided in Assumption 6.
Allowing for two-sided alternatives opens the possibility that µθ,1 = 0 even
under the alternative hypothesis, in which case the power of the pooled
t− test is equivalent to size.

2When the error term uit is serially correlated, one can use a modified version of the pooled
OLS estimator. For details of this modification, refer to Moon and Perron (2003a).
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3.2.2 A Common-Point Optimal Test with ci = c

As shown earlier, to achieve the power envelope, one needs to choose ci = θi a.s.
for ΨnT (C) . Denote this test ΨnT (Θ) . Of course, the test ΨnT (Θ) is infeasible
because it is not possible to identify the distribution of θi in the panel and
generate a sequence from its distribution. Indeed, if the θi were known, there
would of course be no need to test the null of a panel unit root.
One way of implementing the test ΨnT (C) is to use randomly generated ci’s

from some domain that is considered relevant. The variates ci are independent
of θi and the power of the test ΨnT (C) is

Φ

Ã
µc,1µθ,1p
2µc,2

− z̄α

!
. (13)

Since µc,1 ≤
√
µc,2, the power (13) is bounded by

Φ

µ
µθ,1√
2
− z̄α

¶
, (14)

which is achieved if we choose ci = c, where c is any positive constant. We
denote this test ΨnT (c) .

Remarks

(a) Not surprisingly, the power (14) of the test ΨnT (c) is identical to that of
the t - ratio test in the previous section. Of course, both tests are based
on the homogeneous alternative hypothesis.

(b) Note that the power of the test ΨnT (c) does not depend on c. The test
is optimal against the special homogeneous alternative hypothesis H2 for
any choice of c. This result is in contrast to the power of the point optimal
test for unit root time series in Elliot et al (1996), where the power of the
test does depend on the value of c. The reason is that the local alternative
in the panel unit root case is ρci = 1 − c

n1/2T
which is closer to the null

hypothesis than the alternative ρci = 1−
c
T that applies in the case where

there is only time series data. In effect, when we are this close to the null
hypothesis with a homogeneous local alternative, it suffices to use any
common local alternative in setting up the panel point optimal test.

4 Fixed Effects I: Incidental Parameters Case
The model we consider in this section assumes that the fixed effects b0igt = b0i,
so that gt = 1 or that the incidental trend term b1it is known but the incidental
parameter term b0i is unknown. In this case, the model has the matrix form

Z = β0G
0
0 + Y.
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4.1 Power Envelope

This section derives the power envelope of panel unit root tests for H0 that
are invariant to the transformation Z → Z + β∗0G

0
0 for arbitrary β

∗
0. Recall the

definition of the notation ∆C in (9) . Define ∆CZ = (z0,∆Cz1, ...,∆CzT ) and
∆Cβ0G

0
0 = (β0,∆Cβ0, ...,∆Cβ0) . Let

LnT (C, β0) = tr(∆CZ −∆Cβ0G00)(∆CZ −∆Cβ0G00)0.

A (Gaussian) point optimal invariant test statistic for this fixed effects I case
can be constructed as follows (see, for example, Lehmann (1959), Dufour and
King (1991), and Elliott et al (1996)):

Vfe1,nT (C) =
1

σ̂2

∙
min
β0

LnT (C, β0)−min
β

LnT (0, β0)

¸
− 1
2
µc,2

For given ci’s, the point optimal invariant test, say Ψfe1,nT (C), rejects the null
hypothesis for small values of Vfe1,nT (C) .
Letting b̂0i (ci) = (∆ciG

0
0∆ciG0)

−1
(∆ciG

0
0∆ciZi) and Ŷ i (ci) = Zi−G0b̂0i (ci) =

Y i −G0

³
b̂0i (ci)− b0i

´
, we can rewrite Vfe1,nT (C) as

Vfe1,nT (C)

=
1

σ̂2

nX
i=1

⎡⎣ ³
Ŷ i (ci)− ρci Ŷ −1,i (ci)

´0 ³
Ŷ i (ci)− ρci Ŷ −1,i (ci)

´
−
³
Ŷ i (0)− Ŷ −1,i (0)

´0 ³
Ŷ i (0)− Ŷ −1,i (0)

´
⎤⎦− 1

2
µc,2

=
1

σ̂2

nX
i=1

⎡⎣ ³
∆ciY i −∆ciG0

³
b̂0i (ci)− b0i

´´0 ³
∆ciY i −∆ciG0

³
b̂0i (ci)− b0i

´´
−
³
∆Y i −∆G0

³
b̂0i (ci)− b0i

´´0 ³
∆Y i −∆G0

³
b̂0i (ci)− b0i

´´
⎤⎦

−1
2
µc,2

=
1

σ̂2
Vfe11,nT (C) +

1

σ̂2
Vfe12,nT (C)−

1

2
µc,2,

where

Vfe11,nT (C) =
nX
i=1

£
(∆ciY i)

0
(∆ciY i)− (∆Y i)

0
(∆Y i)

¤
=

1

n1/2

nX
i=1

ci

Ã
2

T

TX
t=1

∆yityit−1

!
+
1

n

TX
i=1

c2i

Ã
1

T 2

TX
t=1

y2it−1

!
.

and

Vfe12,nT (C) =
nX
i=1

∙ ¡
∆Y 0

i∆G0
¢
(∆G00∆G0)

−1 (∆G00∆Y i)

−
¡
∆ciY

0
i∆ciG0

¢
(∆ciG

0
0∆ciG0)

−1
(∆ciG

0
0∆ciY i)

¸

=
nX
i=1

⎡⎣y2i0 − 1

1 +
c2i
n
1
T

Ã
yi0 +

ci
n1/2

1

T
(yiT − yi0) +

c2i
n

1

T 2

TX
t=1

yit−1

!2⎤⎦ .
10



Then, we have

Vfe1,nT (C)

=
1

n1/2

nX
i=1

ci

"Ã
2

T

TX
t=1

∆yityit−1

!
− 2

µ
yi0√
T

¶µ
yiT√
T
− yi0√

T

¶#

+
1

n

nX
i=1

c2i

"
1

T 2

TX
t=1

y2it−1

#
− 1
2
µc,2 +Op

µ
1√
T

¶
.

In the Appendix, we show that

1

n1/2

nX
i=1

ci

µ
yi0√
T

¶µ
yiT√
T
− yi0√

T

¶
= Op

µ
1√
T

¶
, (15)

and so
Vfe1,nT (C) = VnT (C) + op (1) .

In view of Theorems 7 and 8 we have the following result.

Theorem 9 Suppose Assumptions 1 — 6 hold and that b1it is known. Then, as
(n, T )→∞

(a) Vfe1,nT (C)⇒ N
¡
−E (ciθi) , 2µc,2

¢
.

(b) The power envelope for invariant testing of H0 in (3) against H1 in (4)

is Φ
µq

µθ,2
2 − z̄α

¶
, where µθ,2 = E

¡
θ2i
¢
and z̄α is the (1−α)− quantile

of the standard normal distribution.

Remarks

(a) As in the case of ΨnT (c) , we define the test Ψfe1,nT (c) with a common
point ci = c, a constant. Then, the power of the test Ψfe1,nT (c) is

Φ

µ
µθ,1√
2
− z̄α

¶
. (16)

(b) With the incidental parameters in the model, Levin et al. (2002) proposed
a panel unit root test based on the pooled OLS estimator. Let z̃it =
zit− 1

T

PT
t=1 zit and z̃it−1 = zit−1− 1

T

PT
t=1 zit−1. The t - statistic proposed

by Levin et al. is asymptotically equivalent to the following t - statistic

t+ =

qPT
t=1 z̃

2
it−1

³
ρ̂+pool − 1

´
σ̂√
2

,

11



where

ρ̂+pool =

Pn
i=1

PT
t=1 z̃itz̃it−1 +

nT
2 σ̂2PT

t=1 z̃
2
it−1

.

According to Moon and Perron (2003b), the t+ test has significant as-
ymptotic local power within n−1/4T−1 neighborhoods of unity. Since
Ψfe1,nT (c) has power in neighborhoods shrinking to unity at the faster
rate n−1/2T−1, the t+ test is inadmissible and asymptotically dominated
by Ψfe1,nT (c).

5 Fixed Effects II: Incidental Trends Case
This section considers the important practical case where the heterogeneous
linear trends b0igt are not observable and need to be estimated. We start by
considering local neighborhoods of unity that shrink at the rate 1

n1/4T
.

Assumption 10 κ = 1/4 in (2).

We next relax Assumption 6 by allowing the time series of the panel yit to
be either stationary or explosive under the alternative hypothesis.

Assumption 11 θi ∼ iid with mean µθ and variance σ
2
θ on a bounded support

[−Mlθ, Muθ], where Mlθ, Muθ ≥ 0.

Under Assumption 11, we can re-express hypotheses (3) and (4) using the
second raw moment of θi as follows:

H0 : µθ,2 = 0, (17)

and
H1 : µθ,2 > 0. (18)

After deriving the power envelope for this case, we investigate three panel unit
root tests, derive their asymptotic local power and compare them.

5.1 Power Envelope

This section derives the power envelope of panel unit root tests for H0 that are
invariant to the transformation Z → Z + β∗G0 for arbitrary β∗. Let ∆CZ =
(z0,∆Cz1, ...,∆CzT ) and ∆CβG0 = (βg0,∆Cβg1, ...,∆Cβgt, ...,∆CβgT ) . Define

LnT (C, β) = tr(∆CZ −∆CβG0)(∆CZ −∆CβG0)0.

As above, a (Gaussian) point optimal invariant test statistic can be constructed
as:

Vfe2,nT (C) =
1

σ̂2

∙
min
β

LnT (C, β)−min
β

LnT (0, β)

¸
+

Ã
1

n1/4

nX
i=1

ci

!
+

Ã
1

n1/2

nX
i=1

c2i

!
ωp2T +

Ã
1

n

nX
i=1

c4i

!
ωp4T ,

12



where

ωp2T = − 1
T

TX
t=1

t− 1
T

+
2

T

TX
t=1

µ
t− 1
T

¶2
− 1
3

ωp4T =
1

T 2

TX
t=1

TX
s=1

t− 1
T

s− 1
T

min

µ
t− 1
T

,
s− 1
T

¶
− 2
3

1

T

TX
t=1

µ
t− 1
T

¶2
+
1

9
.

For given ci’s, the point optimal invariant test, say Ψfe2,nT (C), rejects the null
hypothesis for small values of Vfe2,nT (C) .
Let b̂i (ci) = (∆ciG

0∆ciG)
−1
(∆ciG

0∆ciZi) and Ŷ i (ci) = Zi − Gb̂i (ci)
0 =

Y i −G
³
b̂i (ci)− bi

´0
, and rewrite Vfe2,nT (C) as

Vfe2,nT (C)

=
1

σ̂2

nX
i=1

³
Ŷ i (ci)− ρci Ŷ −1,i (ci)

´0 ³
Ŷ i (ci)− ρci Ŷ −1,i (ci)

´
− 1
σ̂2

nX
i=1

³
Ŷ i (0)− Ŷ −1,i (0)

´0 ³
Ŷ i (0)− Ŷ −1,i (0)

´
+

Ã
1

n1/4

nX
i=1

ci

!
+

Ã
1

n1/2

nX
i=1

c2i

!
ωp2T +

Ã
1

n

nX
i=1

c4i

!
ωp4T .

In the Appendix, we show that Vfe2,nT (C) can be written as

Vfe2,nT (C) (19)

=
1

n1/4σ̂2

nX
i=1

ci

"
2

T

TX
t=1

∆yityit−1 −
µ
yiT√
T

¶2
+

µ
yi0√
T

¶2
+ σ̂2

#

+
1

n1/2σ̂2

nX
i=1

c2i

⎡⎣ 1
T 2

PT
t=1 y

2
it−1 − 2

³
yiT√
T

´³
1

T
√
T

PT
t=1

t
T yit−1

´
+1
3

³
yiT√
T

´2
+ 1

3

³
yi0√
T

´³
yiT−yi0√

T

´
+ σ̂2ωp2T

⎤⎦
+
1

nσ̂2

nX
i=1

c4i

⎡⎢⎣ −
³

1
T
√
T

PT
t=1

t
T yit−1

´2
+ 2

3

³
yiT√
T

´³
1

T
√
T

PT
t=1

t
T yit−1

´
−19

³
yiT√
T

´2
+ σ̂2ωp4T

⎤⎥⎦
+op (1)

when (n, T →∞) with n3/4

T → 0.

Lemma 12 Under Assumptions 1 — 4, 10, and 11, the following hold:

(a) 1
n1/4σ̂2

Pn
i=1 ci

∙
2
T

PT
t=1∆yityit−1 −

³
yiT√
T

´2
+
³
yi0√
T

´2
+ σ̂2

¸
= op (1) ;

13



(b) 1
n1/2σ̂2

Pn
i=1 c

2
i

⎡⎢⎢⎢⎢⎣
³
1
T 2

PT
t=1 y

2
it−1 − σ̂2 1T

PT
t=1

t−1
T

´
+ 1

3

½³
yiT√
T

´2
− σ̂2

¾
−
n
2
³
yiT√
T

´³
1

T
√
T

PT
t=2

t−1
T yit−1

´
− σ̂2 2T

PT
t=1

¡
t−1
T

¢2o
+1
3

³
yi0√
T

´³
yiT−yi0√

T

´
⎤⎥⎥⎥⎥⎦

⇒ N
¡
− 1
90E

¡
c2i θ

2
i

¢
, 145E

¡
c2i
¢¢
;.

(c) 1
nσ2

Pn
i=1 c

4
i

⎡⎢⎣ −
³

1
T
√
T

PT
t=1

t
T yit−1

´2
+ 2

3

³
yiT√
T

´³
1

T
√
T

PT
t=1

t
T yit−1

´
−19

³
yiT√
T

´2
+ σ̂2ωp4T

⎤⎥⎦ =
op (1) .

In view of these results, we have the following theorem.

Theorem 13 Suppose that Assumptions 1 — 4, 10, and 11. Then, Vfe2,nT (C)⇒
N
¡
− 1
90E

¡
c2i θ

2
i

¢
, 145E

¡
c4i
¢¢
.

>From Theorem 13, we find that the size α asymptotic critical value is

ψfe2 (C, α) = −
r

µc,4
45

z̄α,

and the asymptotic power is

Φ

Ã
1

6
√
5

E
¡
c2i θ

2
i

¢p
E (c4i )

− z̄α

!
. (20)

By the Cauchy-Schwarz inequality, we have

Φ

Ã
1

6
√
5

E
¡
c2i θ

2
i

¢p
E (c4i )

− z̄α

!
≤ Φ

µ
1

6
√
5

√
µθ,4 − z̄α

¶
. (21)

Again, maximal power, Φ
³

1
6
√
5

√
µθ,4 − z̄α

´
, is achieved by choosing ci = θi.

According to the Neyman-Pearson lemma, Φ
³

1
6
√
5

√
µθ,4 − z̄α

´
is the power en-

velope. Summarizing, we have the following theorem.

Theorem 14 Suppose that the trends b0igt in (1) are unknown and Assumptions
1 — 4, 10, and 11 hold. Then, the power envelope for testing the null hypothesis

H0 in (3) against the alternative hypothesis H1 in (4) is Φ
³

1
6
√
5

√
µθ,4 − z̄α

´
,

where µθ,4 = E
¡
θ4i
¢
and z̄α is the (1 − α)− quantile of the standard normal

distribution.

Remarks

(a) The power envelope of invariant tests of H0 in (3) against H1 depends on
the fourth moment of the local to unity parameters θ0is.
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(b) When the alternative hypothesis is the homogeneous alternative H2 (i.e.,
θi = θ), the power envelope is

Φ

µ
1

6
√
5
θ2 − z̄α

¶
. (22)

The power envelope is attained in this case by using ci = c for any choice
of c.

(c) If the θi are symmetrically distributed about µθ,1 and κ4 is the 4
th cumu-

lant, then √µθ,4 = µ2θ,1

n
1 +

6σ2θ
µ2θ,1

+
3σ4θ+κ4
µ4θ,1

o1/2
and this will be close to

µ2θ,1 when the ratios
6σ2θ
µ2θ,1

and 3σ4θ+κ4
µ4θ,1

are both small. In such cases, it is

clear from (21) that the test with ci = c for any choice of c will be close
to the power envelope.

5.2 Power Comparison

We compare the powers of three tests, which we consider in turn.

5.2.1 The Optimal Invariant Test of Ploberger and Phillips (2002)

We start with the optimal invariant panel unit root test proposed by Ploberger
and Phillips (2002). Let ∆G0 = (g0,∆g1, ...,∆gT ) and ∆Z = (z0,∆z1, ...,∆zT ) .
Under the null hypothesis, ∆G and ∆Z deliver generalized least squares (GLS)
transformations of the trends G and the panel data Z, respectively. To construct
the test statistic, we first estimate the trend coefficients β by

β̄ = (∆Z∆G) (∆G0∆G)
−1

,

and detrend the panel data Z using this GLS estimate giving

E = Z − β̄G0.

Define

Vg,nT =

√
n

σ̂2

µ
1

nT 2
tr (EE0)− σ̂2ω1T

¶
, (23)

where ω1T = 1
T

PT
t=1

t
T

¡
1− t

T

¢
. In summation notation,

Vg,nT =
1√
n

nX
i=1

"
1

T σ̂2

TX
t=1

Z̄2it,T − ω1T

#
, (24)

where

Z̄it,T =
1√
T

∙
(zit − zi0)−

t

T
(ziT − zi0)

¸
,

a maximal invariant statistic. In view of (23) and (24) , we may interpret Vg,nT
as the standardized information of the GLS detrended panel data. The test
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Ψg,nT proposed by Ploberger and Phillips (2002) rejects the null hypothesis H0
for small values of Vg,nT .
To investigate the asymptotic power of Ψg,nT , we first derive the asymptotic

distribution of Vg,nT .

Lemma 15 Suppose Assumptions 1 — 4, 10, and 11 hold. Then, Vg,nT ⇒
N
¡
− 1
90µθ,2,

1
45

¢
.

Using Lemma 15, it is quite straightforward to find the size α asymptotic
critical values φg (α) of the test Ψg,nT . For z̄α, the (1− α)− quantile of Z is

φg (α) = −
1

3
√
5
z̄α,

and the asymptotic local power is

Φ

µ
µθ,2

6
√
5
− z̄α

¶
, (25)

showing that the test Ψg,nT has significant asymptotic power against the local
alternative H1.

Remarks

(a) Notice that the asymptotic power of the test Ψg,nT is determined by the
second moment of θi, µθ,2, so that it relies on the variance of θi as well as
the mean of θi.

(b) According to Ploberger and Phillips (2002), the test Ψg,nT is an opti-
mal invariant test. Let Qθ,nT (θ) be the joint probability measure of
the data for the given θ0is and let v be the probability measure on the
space of θi. Ploberger and Phillips (2002) show that the test Ψg,nT is as-
ymptotically the optimal invariant test that maximizes the average powerR ¡R

Ψg,nT dQθ,nT (θ)
¢
dv, a quantity which also represents the power of

Ψg,nT against the Bayesian mixture
R
Qθ,nT (θ) dv.

(c) Comparing the power (25) of the test Ψg,nT to the power envelope is
straightforward. By the Cauchy-Schwarz inequality we have

Φ

µ
µθ,2

6
√
5
− z̄α

¶
≤ Φ

µ√
µθ,4

6
√
5
− z̄α

¶
.

The test Ψg,nT achieves the power envelope if the θi are constant a.s., that
is, the power envelope is achieved against the special alternative hypothesis
H2.
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5.2.2 The LM Test in Moon and Phillips (2003)

The second test we investigate is the LM test proposed by Moon and Phillips
(2003), which is constructed in a fashion similar to Vg,nT . The main difference
is that Moon and Phillips (2003) use ordinary least squares (OLS) to detrend
the data. To fix ideas, define QG = IT − PG with PG = G (G0G)−1G. Let
DT = diag (1, T ) . and

Vo,nT =

√
n

σ̂2

µ
1

nT 2
tr (ZQGZ

0)− σ̂2ω2T

¶
,

where

ω2T =
1

T

TX
t=1

t

T
− 1

T 2

TX
t=1

TX
s=1

min (t, s)

T
hT (t, s) ,

hT (t, s) = g0tD
−1
T

Ã
1

T

TX
p=1

D−1T gpg
0
pD
−1
T

!−1
D−1T gs.

Define

Z̃it,T =
1√
T

⎡⎣zit − g0t

Ã
TX
t=1

gtg
0
t

!−1Ã TX
t=1

g0tzit

!⎤⎦ ,
a scaled version of the OLS detrended panel. Then, we can write

Vo,nT =
1√
n

nX
i=1

"
1

T σ̂2

TX
t=1

Z̃2it,T − ω2T

#
,

which can be interpreted as the standardized information of the detrended panel
data. The LM test, say Ψo,nT , of Moon and Phillips (2003) is to reject the null
hypothesis H0 for small values of Vo,nT (c) .
The following theorem gives the limit distribution of Vo,nT (c) .

Lemma 16 Suppose Assumptions 1 — 4, 10, and 11 hold. Then, Vo,nT ⇒
N
¡
− 1
420µθ,2,

11
6300

¢
.

The size α asymptotic critical value of Ψo,nT , say φo (α) , is given by

φo (α) = −
r

11

6300
z̄α,

and the asymptotic power is

Φ

µ
µθ,2

2
√
77
− z̄α

¶
.

Remarks
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(a) The test Ψo,nT has significant asymptotic power against the local alterna-
tive H1 and its power depends on the second moment of θi, µθ,2 just as
the power of the test Ψg,nT .

(b) We also find that the asymptotic power of the optimal invariant test Ψg,nT
dominates that of the test Ψo,nT because

µ2θ+σ
2
θ

2
√
77

<
µ2θ+σ

2
θ

2
√
45

. This is perhaps
not surprising since the optimal invariant test Ψg,nT is based on GLS-
detrended data, while the test Ψo,nT is based on OLS-detrended data.

5.2.3 A Common-Point Optimal Invariant Test

As with the test ΨnT (Θ), implementation of the test Vfe2,nT (Θ) that achieves
the power envelope is infeasible. If we use randomly generated c0is that are
independent of θi and the panel data zit, according to (20) , the power of the
test Vfe2,nT (C) is

Φ

Ã
1

6
√
5

µc,2µθ,2√
µc,4

− z̄α

!
. (26)

Since µc,2 ≤
√
µc,4, the power (26) is bounded by

Φ

µ
1

6
√
5
µθ,2 − z̄α

¶
, (27)

which is achieved when we choose ci = c for Vfe2,nT (C) , where c is any positive
constant. We denote this test Vfe2,nT (c).

Remarks

(a) The power (27) of the test Vfe2,nT (c) is identical to that of the Ploberger-
Phillips optimal invariant test Vg,nT .

(b) The power of the test Vfe2,nT (c) also does not depend on c. It is optimal
against the special homogeneous alternative hypothesis H2 for any choice
of c.

(c) As remarked earlier the test Vfe2,nT (c) will achieve power close to the

power envelope when the ratios 6σ2θ
µ2θ,1

and 3σ4θ+κ4
µ4θ,1

are both small.

Remark To simplify analysis, the panel errors uit in model (1) were assumed
to be iid across i and t. In empirical applications, we can expect the uit to be
serially correlated and possibly heterogeneous across i and sometimes even cross-
sectionally dependent. When the uit are cross sectionally independent but not
identical and serially correlated, we may replace σ̂2 in the test statistics with an
estimator of the cross-sectional average of the long-run variances of the uit. An
example of such an estimator can be found in Moon and Perron (2003a). When
the data are cross section dependent through the presence of some unobservable
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common factors, one can apply the orthogonalization procedure proposed by
Moon and Perron (2003a) and Phillips and Sul (2003) to the panel data after
the removal of deterministic components, and then construct the tests discussed
here using the de-factored data. Alternatively, one can also apply the testing
procedure proposed by Bai and Ng (2001).

6 Simulations
This section reports the results of a small Monte Carlo experiment designed to
assess and compare the finite-sample properties of the tests presented earlier in
the paper. For this purpose, we use the following data generating process:

zit = b0i + b1it+ yit,

yit = ρiyit−1 + uit,

yi0 = 0, b0i, b1i, uit ∼ iid N (0, 1) .

We consider both the incidental parameters case (b1i = 0) of section 4 and the
incidental trends case (b1i 6= 0) of section 5.
We focus our analysis on three main questions. The first is the sensitivity

of the point-optimal invariant test to the choice of ci. The second is how far
the feasible and infeasible point-optimal tests are from the theoretical power
envelope in finite samples. Finally, we look at the impact of the distribution of
the local-to-unity parameters under the alternative hypothesis. Accordingly, we
consider the following nine distributions for the local-to-unity parameters:

(0) θi = 0 ∀i (size),

(1) θi ∼ iidU [0, 2] ,

(2) θi ∼ iidU [0, 4] ,

(3) θi ∼ iidU [0, 8] ,

(4) θi ∼ iidχ2 (1) ,

(5) θi ∼ iidχ2 (2) ,

(6) θi ∼ iidχ2 (4) ,

(7) θi = θ ∼ U [0, 2] ,

(8) θi = θ ∼ χ2 (1) .

These distributions enable us to examine performance of the tests as the
mass of the distribution of the localizing parameters moves away from the null
hypothesis. We can also look at the effect of homogeneous versus heterogeneous
alternatives (case (1) versus (7), and case (4) versus (8)) together with the role
of the higher-order moments of the distribution. For instance, case (1) has the
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same mean as case (4) but smaller higher-order moments. The same situation
arises for cases (2) and (5), and cases (3) and (6).
We consider two values for n (10 and 30) and three values for T (100, 300,

and 500). All tests are carried out at the 5% significance level, and the number
of replications is set at 10,000.
Table 1 presents the results for the incidental parameters case. The tests

we consider are the infeasible point-optimal test with ci = θi (the finite-sample
analog of the power envelope), our common point-optimal (CPO) invariant test
for three values of c, that is 1, 2, and 0.5, the point-optimal test with randomly
generated values of ci’s, and the t-ratio type test as in Moon and Perron (2003b).
The first panel provides the size and power predicted by the asymptotic theory
in section 4 using the moments of θi and ci. The other panels in the table report
the size and size-adjusted power of the tests for the various combinations of n
and T . In the first panel, the second column gives the ratio

√
µθ,2
µθ,1

which controls
how far away the asymptotic power of the CPO test is from the power envelope.
A high ratio implies that the power of the CPO test is much below the power
envelope. The main theoretical predictions for our simulation experiment are:

• The power envelope is higher for the χ2 alternatives than for the uniform
alternatives with the same mean. This is because the power envelope de-
pends on the second uncentered moment of θi and since the χ2 distribution
has fatter tails, its second moment is larger;

• The χ2 alternatives tend to be further below their power envelope than
the uniform alternatives;

• The power of the feasible CPO test is the same for the uniform and χ2

alternatives since power in this case depends only on the mean of θi;

• There is substantial loss of power from using randomly-generated values
of ci;

• The t-test has no power beyond size: its rejection probability is the same
under the null and alternative hypotheses.

For the other panels of the table, the second column gives the expected value
of the autoregressive parameter implied by the distribution of the local-to-untiy
parameter and the values of n and T . As can be seen, the alternatives that we
look at are very close to 1 on average. The results match closely the theoretical
predictions qualitatively. The main conclusions are:

• The size properties of the point-optimal test appear to be mildly sensitive
to the choice of c. The test tends to underreject for c = 1 and 0.5 and
to slightly overreject for c = 2. The two tests with random ci’s tend to
overreject. This is most apparent for ci ∼ U [0, 8] , a case where there is
quite severe size distortion;
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• However, in terms of power, the choice of c is much less important, as
predicted by asymptotic theory. In fact, most of the variation is within
2 simulation standard deviations, and much of the difference is probably
due to experimental randomness;

• In all cases, power is much below what is predicted by theory and below
the power envelope defined by ci = θi;

• However, in the homogeneous cases, there is less power difference between
the CPO tests and the optimal test. This is expected since the CPO test
is most powerful against these alternatives;

• Finally, despite the theoretical predictions that they should be equal, the
actual power for the χ2 alternatives is below that of the corresponding
uniform alternatives.

Table 2 reports the same information as Table 1 for the incidental trends case.
In addition to the above tests, we also consider the optimal test of Ploberger
and Phillips (2002) and the LM test of Moon and Phillips (2003). Once again,
the first panel gives the theoretical predictions for size and power using the as-
ymptotic theory. The second column gives the ratio

√
µθ,4
µθ,2

, which controls the
distance between the power of the CPO test and the asymptotic power enve-
lope. This distance tends to be much higher in this case than in the incidental
parameters case above.
Just as in unit root testing with time series models, power is much lower

when trends are present. In fact, power is much lower than what transpires in
the table since the local alternative approaches the null hypothesis at a slower
rate than for the incidental parameters case. Thus, for the same distribution of
the local-to-unity parameters, we have an alternative hypothesis that is further
away from unity than in Table 1.
The main theoretical predictions contained in the first panel for the inciden-

tal trends case are:

• In contrast to the incidental parameters case, the power of the CPO test
is higher for the χ2 alternatives than for the uniform ones since power
depends on higher-order moments in this case;

• The Moon and Phillips test, although dominated, is expected to perform
well;

• Once again the t-type ratio test has no power beyond size.

Simulation results in the remaining panels of table 2 do not conform as well
to the theoretical predictions as the incidental parameters case. Our findings
for this case are:

• The size properties of the point-optimal test are much more sensitive to
the choice of c and values of n and T than for the incidental parameters
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case. It is therefore difficult to come up with a good choice of c based
on these results, although values between 1 and 2 seem to provide a good
balance for all values of n and T ;

• Both the Ploberger-Phillips and Moon-Phillips tests tend to underreject,
sometimes quite severely;

• The t-type test has good size properties;

• As in the incidental parameters case, the power properties of the CPO
test do not appear sensitive to the choice of c. There is a tendency for
c = 2 to achieve highest power, but all rejection probabilities are close to
one another for the three choices of c considered;

• For cases (3), (5) and (6), the CPO test typically achieves higher power
in finite samples than the infeasible (asymptotically) optimal test. These
differences occur for the most distant alternatives;

• As discussed above and contrary to the incidental parameters case, the
fatter-tailed distributions have higher power than the corresponding uni-
form distributions for the two closest alternatives. For the alternatives
that are furthest away (cases (3) and (6)), the reverse is however true.
This is surprising but might be another sign that the departures in the
case of these distributions are such that they are less well approximated
by the local-to-unity world;

• In all cases, using randomly-generated values for ci’s distorts size and
reduces power and should not be used in practice;

• The Ploberger-Phillips test behaves in a similar way to the CPO test,
as predicted by the asymptotics. However, it almost always has a lower
size-adjusted power than the CPO test with c = 2;

• The LM test of Moon and Phillips has good power but appears to be
slightly dominated by the other two tests, as again predicted by the theory;

• The t-type test has no power beyond size as shown by Moon and Perron
(2003a);

• When the alternative hypothesis is homogeneous (cases (7) and (8)), the
tests based on a common value of ci have higher power than for the corre-
sponding heterogeneous alternative case. This phenomenon is more pro-
nounced for the χ2 alternative hypothesis. The power properties of the
tests with randomly generated ci are not different in the homogeneous and
heterogeneous cases.

These results suggest that our asymptotic theory generally predicts well the
qualitative behavior of tests statistics in the vicinity of the panel unit root
null hypothesis. The presence of more complex deterministic components and
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increasing distance from the null hypothesis reduces the accuracy of the ana-
lytic results from asymptotic theory. The simulation findings generally support
the analytic results and strongly suggest that the use of the CPO test (and
the Ploberger-Phillips test in the trends case) improves power over the more
commonly-used t-ratio type statistics.

7 Conclusion
In terms of their asymptotic power functions, the Ploberger-Phillips (2002) test
and the point optimal test have good discriminatory power against a unit root
null in shrinking neighborhoods of unity. When the alternative is homogeneous
it is possible to attain the asymptotic power envelope and both the Ploberger-
Phillips test and the point optimal test are uniformly most powerful in this
case. Interestingly, the point optimal test has this property irrespective of the
common alternative point chosen to set up the test. This is in contrast to point
optimal tests of a unit root that are based solely on time series data (Elliot et.
al. 1996), where no test is uniformly most powerful and an arbitrary selection
of a common point is needed in the construction of the test.
An important empirical consequence of the present investigation is that in-

creasing the complexity of the fixed effects in a panel model inevitably reduces
the potential power of unit root tests. This reduction in power has a quanti-
tative manifestation in the radial order of the shrinking neighborhoods around
unity for which asymptotic power is non negligible. When there are no fixed
effects or constant fixed effects, tests have power in a neighborhood of unity of
order n−1/2T−1. When incidental trends are fitted, the tests only have power
in a larger neighborhood of order n−1/4T−1. A continuing reduction in power
is to be expected as higher order incidental trends are fitted in a panel model.
The situation is analogous to what happens in time series models where unit
root nonstationary data is fitted by a lagged variable and deterministic trends.
In such cases, both the lagged variable and the deterministic trends compete to
model the nonstationarity in the data with the upshot that the rate of conver-
gence is affected. In particular, Phillips (2001) showed that rate of convergence
to a unit root is slowed by the presence of increasing numbers of deterministic
regressors. In the panel model context, the present paper shows that discrim-
inatory power against a unit root is weakened as more complex deterministic
regressors are included in the panel model.
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8 Appendix: Technical Proofs
We let zit (0) and yit (0) , respectively, denote the panel observations zit and yit
that are generated by model (1) with ρi = 1, that is, θi = 0. We also define
Z (0) , Y (0) , Y−1 (0) , respectively, in similar fashion from Z, Y, and Y−1. Also,
for notational simplicity, we write ui1 = yi1. Finally, define

h (r, s) = (1, r)

Ã
1

R 1
0
rdrR 1

0
rdr

R 1
0
r2dr

!−1µ
1
s

¶
= 4− 6r − 6s+ 12rs.

8.1 Preliminary Results

First, we introduce a lemma that is useful in the proof of the main results.
Suppose that ci are sequence of iid random variables whose supports are the
same of those of θ0is and are independent of uit for all i and t.

Lemma 17 Suppose that Assumptions 1 — 4, 10, and 11 hold. Then, the fol-
lowing hold as (n, T →∞) with

√
n
T → 0.

(a) 1√
n

Pn
i=1 c

2
i

h
1

T2σ2

PT
t=1

©
(yit − yi0)− t

T (yiT − yi0)
ª2 − ω1T

i
⇒ N

µ
−E(c2i θ2i )

90 ,
E(c4i )
45

¶
(b) 1√

nσ2
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i=1

h
1
T 2
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t=1 y

2
it − 1

T 3
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t=1
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s=1 yityishT (t, s)− ω2T

i
⇒ N

µ
−E(θ2i )

420 , 11
6300

¶
.

Proof of Lemma 17
Part (a): For notational simplicity let Ȳit,T = (yit − yi0) − t

T (yiT − yi0) and
Ȳit,T (0) = (yit (0)− yi0 (0))− t

T (yiT (0)− yi0 (0)) . Using this notation, we de-
compose

1√
n

nX
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c2i

"
1

T 2σ2
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= Ia + IIa + IIIa, say.

Notice by a direct calculation that

E
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= O

µ
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¶
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Since
√
n
T → 0, by applying Theorem 3 in Phillips and Moon (1999), we have

Ia ⇒ N

µ
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1
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E
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24



For term IIa, by definition we have

IIa

=
1√
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Notice by definition that
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where we set ui0 = yi0 for notational convenience. Recall that κ = 1
4 . By (29)

and applying Corollary 1 in Phillips and Moon (1999), we have
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and
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Combining the limits of IIa1, IIa2, and IIa3, we have

I2 →p
1
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E
¡
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2
i

¢
. (30)
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Next, for IIIa, write XiT =
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Then, by (29) , we have
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since
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which yields
IIIa1 = op (1) .

Next, applying Corollary 1 in Phillips and Moon (1999), we have
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Combining the limits of I31 and I32, we have
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>From (28) , (30) , and (31) , we have the required result for Part (a). ¥
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Part (b): In matrix notation write
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we apply Theorem 3 in Phillips and Moon (1999) and deduce that
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For IIb, we further decompose the term IIb into
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and
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A direct calculation shows that
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Also,
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Next, by Corollary 1 in Phillips and Moon (1999), we have
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Combining the limits of the terms Ib, IIb1, and IIb2 in (32) , (33) , and (34) ,
respectively, we have the desired result for Part (b). ¥

8.2 Proofs and Derivations of the Main Results

Proof of (15) .
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Next, from (29) we have

yiT√
T
−yiT (0)√

T
=

1

T 1/2

T−1X
p=0

³
ρT−pi − 1

´
uip =

1

T 1/2

T−1X
p=0

"
T−pX
l=1

(T−pl )

µ
−θi
n1/2T

¶l#
uip.

Then, the second term is

1

n1/2

nX
i=1

ci

µ
yi0√
T

¶µ
yiT√
T
− yiT (0)√

T

¶

= − 1√
T

1

n

nX
i=1

ciθiyi0

Ã
1

T 1/2

T−1X
p=0

T − p

T
uip

!
+ op

µ
1√
T

¶
= Op

µ
1√
T

¶
,

as required. ¥

Derivation of Vfe2,nT (C) in (19) .
By definition, we write
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say,

where

Vfe21,nT (C) =
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£
(∆ciY i)

0
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0
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By definition,
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Next, denoting D = diag(
√
T , 1) and G̃ = GD, we rewrite
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Computation of Vfe221,nT (C) : A direct calculation shows that
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where 1
n
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i=1RkiT = Op (1) for k = 2, ..., 4.

Computation of Vfe222,nT (C) :
>From a direct calculation we haveµ
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where O
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holds uniformly across i because the support of c0is is bounded.

Then,
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where the op (1) error holds as (n, T →∞) with n3/4

T → 0.
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Putting the terms in Vfe21,nT (C) , Vfe221,nT (C) , and Vfe222,nT (C) together,
we have the required result. ¥

Proof of Lemma 12
Part (a). First, notice from
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¡
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where the last line holds because
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where the second equality holds because 1√
n
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= Op (1),
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it = Op (1) and by Assumption 4 and the last equality holds

because n3/4

T → 0 (Assumption 3) . Therefore, we have all the required result
for Part (a). ¥

Part (b).
By Lemma 17(a) and Assumptions 4 and 3, we have
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Then, for the required result for Part (b), it remains to show that
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and by (29) ,
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Part (c).
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Under Assumption 4, we have
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and the required result for Part (c) follows by the WLLN (e.g. Corollary 1 in
Phillips and Moon (1999)). ¥

Proof of Lemma 15
Lemma 15 holds by Lemma 17(a) with ci = 1 and Assumption 4. ¥

Proof of Lemma 16
Notice that we can decompose
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Then, lemma 16 holds by Lemma 17(b) and Assumption 4. ¥

36



References
[1] Bai, J. and S. Ng (2001): A PANIC Attack on Unit Roots and Cointegra-

tion, Boston College Working Paper 519.

[2] Choi, I. (2001): Unit Root Tests for Panel Data, Journal of International
Money and Finance, 20, 249—272.

[3] Dufour, J. and M. King (1991): Optimal Invariant Tests for the Autocorre-
lation Coefficient in Linear Regressions with Stationary or Nonstationary
AR(1) Errors, Journal of Econometrics, 47, 115—143.

[4] Elliott, G. T. Rothenberg, and J. Stock (1996): Efficient Tests for an Au-
toregressive Unit Root, Econometrica, 64, 813—836.

[5] Im, K., H. Pesaran, Y. Shin (1997): Testing for Unit Roots in Heteroge-
neous Panels, Mimeo.

[6] King, M. (1988): Towards a Theory of Point Optimal Testing, Econometric
Reviews, 6, 169—218.

[7] Lehmann, E. (1959): Testing Statistical Hypotheses, New York, Wiley.

[8] Levin, A., F. Lin, and C. Chu (2002): Unit Root Tests in Panel Data:
Asymptotic and Finite-Sample Properties, Journal of Econometrics, 108,
1—24.

[9] Maddala, G.S. and S. Wu (1999): A Comparative Study of Unit Root Tests
with Panel Data and a New Simple Test, Oxford Bulletin of Economics and
Statistics, 61, 631—651.

[10] Moon, H.R. and B. Perron (2003a): Testing for a Unit Root in Panels with
Dynamic Factors, CLEO Working Paper, USC.

[11] Moon, H.R. and B. Perron (2003b): Asymptotic Local Power of a Test for
Unit Roots in Panels with Fixed Effects, Mimeo.

[12] Moon, H.R. and P.C.B. Phillips (2003): GMMEstimation of Autoregressive
Roots Near Unity with Panel Data, forthcoming in Econometrica.

[13] Phillips, P. C. B. (2001). New Unit Root Asymptotics in the Presence of
Deterministic Trends.. Journal of Econometrics, 11, 323-353.

[14] Phillips, P.C.B. and H.R. Moon (1999): Linear Regression Limit Theory
for Nonstationary Panel Data, Econometrica, 67, 1057—1111.

[15] Phillips, P. C. B. and D. Sul (2003). Dynamic Panel Estimation and Homo-
geneity Testing under Cross Section Dependence. Econometrics Journal.

[16] Ploberger, W. and P.C.B. Phillips (2002): Optimal Testing for Unit Roots
in Panel Data, Mimeo.

37



[17] Quah, D. (1994): Exploiting Cross-Section Variations for Unit Root Infer-
ence in Dynamic Panels, Economics Letters, 44, 9—19.

38



Table 1.Size and size-adjusted power of tests - Incidental parameters case
DGP: zit = b0i + z0it

z0it =
³
1− θi

n
1
2 T

´
z0it−1 + eit

b0i, eit ∼ iidN (0, 1)

Theoretical values

√
µθ,2

.
µθ,1 ci = θi ci = 1 ci = 2 ci = 0.5 ci ∼ U [0, 4] ci ∼ U [0, 8] t test

θi = 0 (size) - 5.0 5.0 5.0 5.0 5.0 5.0 5.0
θi ∼ U [0, 2] 1.155 20.4 17.4 17.4 17.4 15.1 15.1 5.0
θi ∼ U [0, 4] 1.155 49.5 40.9 40.9 40.9 33.7 33.7 5.0
θi ∼ U [0, 8] 1.155 94.7 88.2 88.2 88.2 78.9 78.9 5.0
θi ∼ χ2 (1) 1.732 33.7 17.4 17.4 17.4 15.1 15.1 5.0
θi ∼ χ2 (2) 1.414 63.9 40.9 40.9 40.9 33.7 33.7 5.0
θi ∼ χ2 (4) 1.225 96.6 88.2 88.2 88.2 78.9 78.9 5.0

θi = θ ∼ U [0, 2] 1.155 20.4 20.4 20.4 20.4 15.1 15.1 5.0
θi = θ ∼ χ2 (1) 1.732 33.7 33.7 33.7 33.7 15.1 15.1 5.0

n = 10, T = 100

E (ρi) ci = θi ci = 1 ci = 2 ci = 0.5 ci ∼ U [0, 4] ci ∼ U [0, 8] t test
θi = 0 (size) 1 - 3.0 5.3 1.8 5.6 15.3 4.6
θi ∼ U [0, 2] 0.9968 14.4 12.6 13.4 13.2 11.7 11.6 3.8
θi ∼ U [0, 4] 0.9937 29.8 24.9 25.2 25.1 22.0 22.3 2.2
θi ∼ U [0, 8] 0.9874 66.9 51.9 52.6 51.7 45.0 44.1 1.1
θi ∼ χ2 (1) 0.9968 17.2 11.3 11.4 12.0 11.3 11.0 3.9
θi ∼ χ2 (2) 0.9937 32.1 22.3 22.7 21.5 20.0 19.3 2.7
θi ∼ χ2 (4) 0.9874 60.8 49.7 51.2 49.1 43.7 43.8 1.1

θi = θ ∼ U [0, 2] 0.9968 15.4 13.9 13.6 14.4 12.6 12.2 3.7
θi = θ ∼ χ2 (1) 0.9968 17.4 17.1 16.6 16.6 14.8 14.1 3.6

n = 30, T = 100

E (ρi) ci = θi ci = 1 ci = 2 ci = 0.5 ci ∼ U [0, 4] ci ∼ U [0, 8] t test
θi = 0 (size) 1 - 4.2 5.6 3.5 6.1 11.2 5.1
θi ∼ U [0, 2] 0.9982 16.2 14.1 14.5 14.4 12.3 12.1 4.1
θi ∼ U [0, 4] 0.9963 38.0 29.3 29.8 30.6 24.9 24.6 3.0
θi ∼ U [0, 8] 0.9927 82.6 64.7 65.3 65.0 54.6 53.7 1.2
θi ∼ χ2 (1) 0.9982 20.2 13.6 13.3 12.5 11.7 1.0 3.7
θi ∼ χ2 (2) 0.9963 41.0 26.6 26.4 27.1 21.8 22.0 2.7
θi ∼ χ2 (4) 0.9927 79.2 63.1 63.5 62.8 52.8 52.0 1.4

θi = θ ∼ U [0, 2] 0.9982 16.9 15.5 15.8 16.3 13.1 13.5 4.0
θi = θ ∼ χ2 (1) 0.9982 18.7 17.8 17.8 18.4 16.1 15.3 3.7
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n = 10, T = 300
E (ρi) ci = θi ci = 1 ci = 2 ci = 0.5 ci ∼ U [0, 4] ci ∼ U [0, 8] t test

θi = 0 (size) 1 - 3.0 5.5 1.8 5.5 14.7 4.6
θi ∼ U [0, 2] 0.9989 13.9 12.2 11.6 12.4 11.8 11.4 3.7
θi ∼ U [0, 4] 0.9979 30.1 23.8 25.0 24.8 22.3 21.8 2.4
θi ∼ U [0, 8] 0.9958 65.9 50.8 52.7 51.9 46.2 45.0 0.9
θi ∼ χ2 (1) 0.9989 17.7 10.6 11.1 11.7 10.4 11.4 4.0
θi ∼ χ2 (2) 0.9979 31.2 20.9 21.3 22.1 20.4 19.9 2.6
θi ∼ χ2 (4) 0.9958 59.9 48.4 50.2 48.7 44.2 43.2 1.0

θi = θ ∼ U [0, 2] 0.9989 15.3 13.2 13.2 14.2 13.4 12.7 3.7
θi = θ ∼ χ2 (1) 0.9989 18.3 15.4 15.8 15.7 14.7 14.3 3.9

n = 30, T = 300

E (ρi) ci = θi ci = 1 ci = 2 ci = 0.5 ci ∼ U [0, 4] ci ∼ U [0, 8] t test
θi = 0 (size) 1 - 4.6 6.0 3.5 5.7 10.1 4.8
θi ∼ U [0, 2] 0.9994 15.3 13.3 13.4 14.7 13.1 13.4 4.3
θi ∼ U [0, 4] 0.9988 37.1 29.1 29.2 30.9 25.5 25.6 3.3
θi ∼ U [0, 8] 0.9976 82.7 63.5 63.7 65.6 57.3 55.9 1.3
θi ∼ χ2 (1) 0.9994 20.2 12.2 12.1 13.9 12.7 12.4 4.0
θi ∼ χ2 (2) 0.9988 40.7 25.1 25.3 27.7 24.0 22.8 2.8
θi ∼ χ2 (4) 0.9976 80.3 61.6 61.1 63.7 54.5 53.6 1.6

θi = θ ∼ U [0, 2] 0.9994 16.1 15.3 15.5 16.6 15.1 14.0 3.8
θi = θ ∼ χ2 (1) 0.9994 18.6 17.5 17.8 18.0 16.7 16.4 4.1

n = 10, T = 500

E (ρi) ci = θi ci = 1 ci = 2 ci = 0.5 ci ∼ U [0, 4] ci ∼ U [0, 8] t test
θi = 0 (size) 1 - 3.0 5.3 1.8 5.4 14.2 4.6
θi ∼ U [0, 2] 0.9994 13.9 13.1 13.4 14.2 12.8 11.3 3.3
θi ∼ U [0, 4] 0.9987 29.5 25.7 25.7 25.5 21.6 21.4 2.1
θi ∼ U [0, 8] 0.9975 66.3 52.5 54.9 53.0 45.6 44.4 0.8
θi ∼ χ2 (1) 0.9994 16.9 11.8 12.2 12.2 11.0 11.1 3.8
θi ∼ χ2 (2) 0.9987 28.9 21.9 23.8 22.7 20.0 20.0 2.6
θi ∼ χ2 (4) 0.9975 61.5 50.5 52.3 51.5 44.0 42.6 0.8

θi = θ ∼ U [0, 2] 0.9994 15.1 14.3 14.9 15.3 12.8 12.5 3.6
θi = θ ∼ χ2 (1) 0.9994 18.2 16.5 17.0 16.8 14.7 13.3 3.8

n = 30, T = 500

E (ρi) ci = θi ci = 1 ci = 2 ci = 0.5 ci ∼ U [0, 4] ci ∼ U [0, 8] t test
θi = 0 (size) 1 - 4.0 5.5 3.7 5.8 10.2 4.6
θi ∼ U [0, 2] 0.9996 16.2 14.3 14.5 14.3 12.5 12.5 4.3
θi ∼ U [0, 4] 0.9993 38.0 30.9 30.4 30.1 25.2 24.8 3.3
θi ∼ U [0, 8] 0.9985 81.9 66.8 65.8 65.0 55.2 55.0 1.5
θi ∼ χ2 (1) 0.9996 21.5 13.5 13.2 12.9 11.5 12.1 4.8
θi ∼ χ2 (2) 0.9993 41.6 27.4 26.0 26.7 22.0 22.0 3.0
θi ∼ χ2 (4) 0.9985 81.7 63.7 63.6 63.6 53.9 52.0 1.7

θi = θ ∼ U [0, 2] 0.9996 17.0 16.5 16.4 16.1 13.7 13.0 4.4
θi = θ ∼ χ2 (1) 0.9996 18.7 18.7 18.1 18.6 15.9 15.6 4.4
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Table 2. Size and size-adjusted power of tests - Incidental trends case
DGP: zit = b0i + b1it+ z0it
z0it =

³
1− θi

n
1
4 T

´
z0it−1 + eit

b0i, b1i, eit ∼ iidN (0, 1)

Theoretical values

√
µθ,4

.
µθ,2 ci = θi ci = 1 ci = 2 ci = 0.5 ci ∼ U [0, 4] ci ∼ U [0, 8] Ploberger-Phillips Moon-Phillips t test

θi = 0 (size) - 5.0 5.0 5.0 5.0 5.0 5.0 5.0 5.0 5.0
θi ∼ U [0, 2] 1.342 6.5 6.1 6.1 6.1 5.8 5.8 6.1 5.8 5.0
θi ∼ U [0, 4] 1.342 13.3 10.6 10.6 10.6 8.9 8.9 10.6 9.0 5.0
θi ∼ U [0, 8] 1.342 68.7 47.8 47.8 47.8 32.3 32.3 47.8 33.4 5.0
θi ∼ χ2 (1) 3.416 18.9 7.8 7.8 7.8 7.0 7.0 7.8 7.0 5.0
θi ∼ χ2 (2) 2.449 42.7 14.7 14.7 14.7 11.5 11.5 14.7 11.7 5.0
θi ∼ χ2 (4) 1.826 94.7 55.7 55.7 55.7 37.8 37.8 55.7 39.1 5.0

θi = θ ∼ U [0, 2] 1.342 6.5 6.5 6.5 6.5 5.8 5.8 6.1 5.8 5.0
θi = θ ∼ χ2 (1) 3.416 18.9 18.9 18.9 18.9 7.0 7.0 7.8 7.0 5.0

n = 10, T = 100

E (ρi) ci = θi ci = 1 ci = 2 ci = 0.5 ci ∼ U [0, 4] ci ∼ U [0, 8] Ploberger-Phillips Moon-Phillips t test
θi = 0 (size) 1 - 11.9 1.4 25.8 32.3 0.7 1.4 1.0 6.3
θi ∼ U [0, 2] 0.9944 6.3 6.0 5.9 5.9 5.1 5.4 5.7 5.6 4.5
θi ∼ U [0, 4] 0.9888 8.7 8.3 8.7 8.2 6.0 6.4 7.9 7.3 4.7
θi ∼ U [0, 8] 0.9775 9.3 18.4 19.0 16.4 8.0 8.9 18.6 15.1 3.2
θi ∼ χ2 (1) 0.9944 6.9 6.5 6.6 6.2 5.5 5.5 6.6 5.4 4.9
θi ∼ χ2 (2) 0.9888 7.3 8.9 9.2 8.7 6.3 6.6 9.0 8.1 4.6
θi ∼ χ2 (4) 0.9775 7.9 17.5 18.7 16.0 8.4 8.9 18.0 14.5 3.3

θi = θ ∼ U [0, 2] 0.9944 6.5 6.2 6.0 5.8 6.1 5.9 5.9 5.6 5.1
θi = θ ∼ χ2 (1) 0.9944 6.6 8.0 7.6 7.2 6.0 5.7 7.3 6.8 4.8



n = 30, T = 100

E (ρi) ci = θi ci = 1 ci = 2 ci = 0.5 ci ∼ U [0, 4] ci ∼ U [0, 8] Ploberger-Phillips Moon-Phillips t test
θi = 0 (size) 1 - 21.4 6.4 41.8 46.4 9.2 2.3 1.5 6.9
θi ∼ U [0, 2] 0.9957 6.4 6.4 5.8 5.5 5.0 5.3 6.3 6.1 5.3
θi ∼ U [0, 4] 0.9915 11.1 8.9 8.8 7.8 5.5 6.2 9.9 8.5 5.4
θi ∼ U [0, 8] 0.9829 16.2 22.1 22.6 18.7 7.3 9.8 23.4 18.7 4.2
θi ∼ χ2 (1) 0.9957 8.1 6.4 6.4 6.1 4.8 5.1 7.0 6.1 5.1
θi ∼ χ2 (2) 0.9915 8.8 10.3 9.5 8.6 5.6 6.6 10.1 8.8 4.6
θi ∼ χ2 (4) 0.9829 9.6 22.2 21.4 17.5 7.5 9.4 23.4 18.7 3.5

θi = θ ∼ U [0, 2] 0.9957 6.6 6.2 5.8 5.5 5.4 4.8 6.9 6.0 5.1
θi = θ ∼ χ2 (1) 0.9957 7.4 8.2 7.4 7.8 5.6 5.3 8.7 7.3 5.0

n = 10, T = 300

E (ρi) ci = θi ci = 1 ci = 2 ci = 0.5 ci ∼ U [0, 4] ci ∼ U [0, 8] Ploberger-Phillips Moon-Phillips t test
θi = 0 (size) 1 - 3.5 0.1 8.8 31.1 0.7 1.5 2.2 5.2
θi ∼ U [0, 2] 0.9981 6.5 5.5 5.9 5.4 5.7 5.3 5.9 5.3 4.9
θi ∼ U [0, 4] 0.9962 8.1 7.9 7.6 7.6 6.6 6.4 8.7 7.1 4.2
θi ∼ U [0, 8] 0.9925 9.3 18.1 18.0 16.6 8.4 8.2 18.4 14.4 2.6
θi ∼ χ2 (1) 0.9981 6.6 6.9 6.4 5.8 5.7 5.8 6.5 5.7 4.9
θi ∼ χ2 (2) 0.9962 7.0 8.9 8.8 7.7 6.1 6.1 9.2 7.9 4.2
θi ∼ χ2 (4) 0.9925 8.1 17.1 17.6 15.8 8.6 8.3 17.9 14.5 2.7

θi = θ ∼ U [0, 2] 0.9981 6.5 5.9 6.5 5.2 5.3 5.2 5.7 5.6 4.5
θi = θ ∼ χ2 (1) 0.9981 6.7 7.4 6.9 6.7 5.5 5.3 7.6 6.3 4.6

n = 30, T = 300

E (ρi) ci = θi ci = 1 ci = 2 ci = 0.5 ci ∼ U [0, 4] ci ∼ U [0, 8] Ploberger-Phillips Moon-Phillips t test
θi = 0 (size) 1 - 7.4 1.8 14.5 45.6 7.5 3.3 2.8 5.8
θi ∼ U [0, 2] 0.9986 6.4 6.1 6.0 5.8 5.9 5.9 6.0 6.2 4.4
θi ∼ U [0, 4] 0.9972 10.2 9.5 8.8 8.6 5.4 6.4 8.3 8.4 4.3
θi ∼ U [0, 8] 0.9942 14.6 21.5 23.0 22.2 7.9 10.2 21.8 18.7 3.2
θi ∼ χ2 (1) 0.9986 7.5 6.1 6.6 6.3 5.4 6.2 6.1 6.7 4.1
θi ∼ χ2 (2) 0.9972 7.9 8.9 9.8 9.4 6.3 6.8 9.2 9.6 4.3
θi ∼ χ2 (4) 0.9942 8.8 21.8 23.1 21.3 7.3 10.0 21.7 18.6 2.9

θi = θ ∼ U [0, 2] 0.9986 6.9 6.1 6.2 5.8 5.2 5.6 5.5 6.2 4.1
θi = θ ∼ χ2 (1) 0.9986 7.0 7.4 7.5 7.5 5.5 6.4 7.2 7.9 4.5



n = 10, T = 500

E (ρi) ci = θi ci = 1 ci = 2 ci = 0.5 ci ∼ U [0, 4] ci ∼ U [0, 8] Ploberger-Phillips Moon-Phillips t test
θi = 0 (size) 1 - 2.4 0.1 5.1 31.6 0.5 1.4 2.3 4.7
θi ∼ U [0, 2] 0.9989 6.0 5.8 6.3 5.7 5.4 5.3 6.4 5.5 5.2
θi ∼ U [0, 4] 0.9978 8.5 7.6 8.9 8.1 5.9 6.5 8.8 7.7 4.3
θi ∼ U [0, 8] 0.9955 7.3 17.6 19.7 17.5 7.6 8.4 19.9 15.1 2.7
θi ∼ χ2 (1) 0.9989 6.3 6.0 6.7 6.1 5.1 5.4 7.3 6.0 4.9
θi ∼ χ2 (2) 0.9978 6.9 8.6 9.5 8.7 5.9 6.3 9.1 7.9 4.2
θi ∼ χ2 (4) 0.9955 7.6 16.2 18.9 17.1 7.4 8.3 19.0 14.2 2.7

θi = θ ∼ U [0, 2] 0.9989 6.4 5.7 6.2 6.2 5.3 5.2 6.2 5.7 5.1
θi = θ ∼ χ2 (1) 0.9989 6.6 7.0 8.0 7.4 5.4 5.6 7.9 6.8 4.7

n = 30, T = 500

E (ρi) ci = θi ci = 1 ci = 2 ci = 0.5 ci ∼ U [0, 4] ci ∼ U [0, 8] Ploberger-Phillips Moon-Phillips t test
θi = 0 (size) 1 - 5.3 1.4 9.7 45.3 7.5 2.9 3.2 5.3
θi ∼ U [0, 2] 0.9991 6.2 5.9 6.1 5.5 5.3 5.8 6.3 5.8 5.0
θi ∼ U [0, 4] 0.9983 9.6 8.4 9.1 8.5 6.0 6.4 8.4 7.3 4.5
θi ∼ U [0, 8] 0.9966 15.3 21.9 23.6 22.2 6.9 10.3 23.1 18.3 2.9
θi ∼ χ2 (1) 0.9991 7.0 6.5 7.1 6.2 5.6 6.0 7.0 5.8 5.0
θi ∼ χ2 (2) 0.9983 8.3 9.2 10.3 9.1 6.0 6.4 9.5 8.4 4.3
θi ∼ χ2 (4) 0.9966 9.1 21.3 23.2 21.7 7.2 10.0 22.6 17.5 3.2

θi = θ ∼ U [0, 2] 0.9991 6.3 6.1 6.1 5.9 5.2 5.6 6.4 5.6 4.7
θi = θ ∼ χ2 (1) 0.9991 7.2 7.8 8.0 7.8 5.5 5.7 7.5 6.8 4.6




