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1 Introduction

In the past decade, much research has been conducted on panels in which both
the cross-sectional and time dimensions are large. Testing for a unit root in such
panels has been a major focus of this research. For example, Quah (1994), Levin
et al (2002), Im et al (1997), Maddala and Wu (1999), and Choi (2001) have
all proposed various tests. These studies derived the limit theory for the tests
under the null hypothesis of a common panel unit root and power properties
were investigated by simulation.

The asymptotic local power properties of some panel unit root tests have
become known quite recently. Moon and Perron (2003a) show that without
incidental trends in the panel, their panel unit root test which is based on a
t-ratio type statistic has significant asymptotic local power in a neighborhood
of unity that shrinks to the null at the rate of n=*/2T~! (where n and T denote
the size of the cross-section and time dimensions, respectively). However, in
the presence of incidental trends, the t-ratio type test statistic constructed from
ordinary least squares (OLS) detrended data has no power (beyond size) in a
n~"T~1-neighborhood of unity with x > 1/6. For a panel with incidental trends,
Ploberger and Phillips (2002) proposed an optimal invariant panel unit root
test that maximizes average local power. They show that the optimal invariant
test has asymptotic local power in a neighborhood of unity that shrinks at the
rate n~ /4T~ thereby substantially dominating the t-ratio test when there are
incidental trends.

The present study makes three contributions. First, the local asymptotic
power envelope of the panel unit root testing problem is derived for three sce-
narios: (i) with no fixed effects; (ii) with fixed effects that are parameterized
by heterogeneous intercept terms (deemed incidental parameters); and (iii) with
fixed effects that are parameterized by heterogeneous linear deterministic trends
(deemed incidental trends). For cases (ii) and (iii) we restrict the class of tests
to be invariant with respect to the incidental parameters and trends. We show
that in cases (i) and (ii), the power envelope is defined within n~'/27~1- neigh-
borhoods of unity and that it depends on the first two moments of the local
to unity parameters. On the other hand, in case (iii), the power envelope is
defined within n~/47T~1- neighborhoods of unity and it depends on the first
four moments of the local to unity parameters.

Second, we derive the asymptotic local power of some existing panel unit
root tests and compare these to the power envelope. For case (i), we investi-
gate the t-ratio statistics studied by Quah (1994), Levin et al, and Moon and
Perron (2003a). For case (ii), we investigate a modified t-ratio statistic that is
asymptotically equivalent to the test proposed by Levin et al. For case (iii), we
compare the optimal invariant test proposed by Ploberger and Phillips (2002)
and the LM test proposed by Moon and Phillips (2002). First, we show that in
all three cases the existing tests do not achieve the optimal power. Next, when
the alternative hypothesis is homogeneous across individuals, it is shown that
some tests (the ¢ — test in case (i) and the optimal invariant test by Ploberger
and Phillips (2002) in cases (ii) and (iii) ) do achieve the power envelope and



are uniformly most powerful.

Third, we propose a simple point optimal invariant panel unit root test for
each case. These tests are optimal when the alternative hypothesis is homoge-
neous, in contrast to point optimal unit root tests for time series (Elliot et al.,
1996).

The paper is organized as follows. Section 2 lays out the model, the hypothe-
ses to test, and the assumptions maintained throughout the paper. Section 3
studies the model where there are no fixed effects (or fixed effects are known),
develops the power envelope, gives a point optimal test and performs some power
comparisons. Sections 4 and 5 perform similar analyses for panel models with
fixed effects and incidental trends. Section 6 reports some simulations compar-
ing the finite sample properties of the main tests studied in Section 5. Section
7 concludes and the Appendix contains technical derivations and proofs.

2 Model

The observed panel z;; is assumed to be generated by the following component
model

zie = bige+yar (1)
Yie = PiYit—1 + Ui, t=1,..,n; t = 1) "'7T7

where wu;; is a mean zero error, g, = (1,t)", and b; = (bo;, by;)'.

The focus of interest is the problem of testing for the presence of a common
unit root in the panel against local alternatives when both n and T are large.
For a local alternative specification we assume that

0.
p;=1-— ﬁ for some constant x > 0, (2)

where 6; is a sequence of iid random variables. The main goal of the paper is
to find efficient tests for the null hypothesis

Hp: 6; =0 as. (i.e.,p;, = 1) for all 4, (3)
against the alternative
Hy :0; #0 (i.e., p; # 1) for some i’s. (4)
A common special case of interest for the alternative hypothesis Hj is
Hs : 6; =0 > 0 for all 4, (5)

where the local to unity coefficients take on a common value 6 > 0 for all 7. In
this case, the series are then locally stationary, that is p, =p=1— nfT < 1 for
all <.

In (1) the nonstationary panel z; has two different types of trends. The
first component b}g; is a deterministic linear trend that is heterogeneous across




individuals ¢. This component characterizes individual effects in the panel. The
second component y;: is a stochastic trend or near unit-root process with p;
close to unity.

The following sections look at three different cases. In the first case by;
and by; are observable, so that y;; is observable. This is essentially a situation
where there are no fixed effects in the panel. The second case arises when
bg; are unobserved but by; are observable. In this case, the panel data z;
contain fixed effects that are parameterized by heterogeneous intercept terms
boi;, which are incidental parameters to be estimated. The third case arises
when both bg; and by; are unobserved, so the panel contains fixed effects that
are parameterized by heterogeneous linear deterministic trends, bg; + b1;t where
both sets of parameters by; and by; are to be estimated.

Before proceeding, we introduce the following notation. Define

/ / /
Zt = (thv “"7znt) y Yt = (ylh "'7ynt) , Ut = (Ult, ""7unt)
Z = (zla""7ZT), Y = (yl,“"vyT)a Y, :(yU,yla'“anyl)a U= (ul,'~'7uT)a

so the (i,t)*" elements of Z, Y, Y_1, and U are z;s, ¥it, Yit—1, and u;s, respectively.
Define the T— vectors Gy = (1,....,1), G; = (1,2,....T), set G = (Go,G1) =
(g1,...,g97)", and define

Bo = (bot,-usbon) s Br = (b11, ey b1n),

ﬁ = (BOaﬁl): (blv"'7bn)l'

Let Z;,Y,;, Y 1, and U; denote the transpose of the ith row of Z,Y, Y_4, and
U, respectively, and write the model in matrix form as

Z = BG'+Y,
Y = pY1+U,

where p = diag (py, .-, p,,) -

Assumption 1 wu;; ~ iid (0,02) with finite fourth moment for i = 1,2.....n
and overt=1,2,...,T.

Assumption 2 The initial observations y;o are iid with E |y;0|” < oo for some
v > 2 and are independent of uy, t > 1 for all 1.

Assumption 3 1 + % + ”;/4 — 0.

Assumption 1 imposes a restrictive error structure that will often be unreal-
istic. The main reason for using it here is to facilitate analytical derivations and
focus on more essential elements in power calculations. In Section 4 we briefly
discuss how it may be relaxed.

The error variance o2 is usually unknown. Most tests depend on suitable
estimates of 02 and, in what follows, we may replace o2 with any estimator 52
that is consistent under both the null and alternative hypotheses. An example



of such an estimator is provided in Moon and Phillips (2003). They show that

6°—0? =0, (ﬁ max (ﬁ, %)) , where 6% = —-tr (¢'¢) and é is the matrix of

residuals from a pooled autoregression on demeaned or detrended data'. For our

purpose in this paper, it is convenient to make the following generic assumption
about the variance estimate 2.

Assumption 4 6% — 02 = O, (% max (ﬁ, %)) .

3 Without Fixed Effects

This section investigates the model in which bjg; is observable or equivalently
that g; = 0 and y;; is observable. We consider local neighborhoods of unity
that shrink at the rate of ﬁ and one sided alternatives, as indicated in the
following assumptions.

Assumption 5 k =1/2 in (2).

Assumption 6 0; is a sequence of iid random variables on a mon-negative
bounded support [0, Mg] for some My > 0.

Let g, = E (Hf ) . The assumption of a bounded support for 6; is made for

convenience, and could be relaxed at the cost of stronger moment conditions.
It is also convenient to assume that the 6; are identically distributed, and this
assumption could be relaxed as long as cross sectional averages of the moments
LNt E (Hf) have limits like 1 .

According to Assumption 6, 6; > 0 for all 4, so that p, < 1. In this case, the
null hypothesis of a unit root in (3) is equivalent to py; = 0 or My = 0 (i.c.
0; =0 a.s.), and the alternative hypothesis in (7) implies y,; > 0. Hence, in
this section we set the hypotheses in terms of the first moment 6; as follows:

Ho : pg 1 =0, (6)

and
Hy @ pgq > 0. (7)

To test these hypotheses, Moon and Perron (2003a) propose t - ratio tests
based on a modified pooled OLS estimator of the autoregressive coefficient and
show that they have significant asymptotic local power in neighborhoods of
unity shrinking at the rate % In this section we first derive the (asymptotic)
power envelope and show that the power function of a point optimal test for Hy
achieves the envelope for the hypotheses above. We then derive compare the
asymptotic local power of this point-optimal test with that of the Moon-Perron
test.

1See Lemma 2 of Moon and Phillips (2003).




3.1 Power Envelope

The power envelope is found by computing the upper bound of the power of all
point optimal tests for each local alternative. To proceed, we define

Ci
Pe; :1_W’

where ¢; is an iid sequence of random variables on [0, M,] for some M, > 0.
Denote by p,. ) the k" raw moment of ¢;, i.e., Pejy =E (cf) . Let

C =diag (c1,...,cn) (8)

and
Ac = diag (1 - p,, L), (9)

where L denote the lag operator. Define
AcY = (yo, Acyr--s Acyt, -, Acyr) -

so that for ¢t > 1, the (1, t)th element of AcY is yit — yit—1 + —1A7Yit—1, & quasi
difference of y;;. For notational simplicity, let A = Ag.
Define
1 / , 1
Vor (C) = e [tr (AcY (AcY)') — tr(AY (AY))] — Sz

The statistic V,,7 (C) is the (Gaussian) likelihood ratio statistic of the null hy-
pothesis p; = 1 against an alternative hypothesis p; = p,. for i = 1,...,n. Ac-
cording to the Neyman-Pearson lemma, rejecting the null hypothesis for small
values of V1 (C) is the most powerful test of the null hypothesis Hy against
the alternative hypothesis p; = p... When the alternative hypothesis is given by
H;, the test is a point optimal test (see, e.g., King (1988)). Let ¥,,1 (C) be the
test that rejects Hy for small values of V1 (C).

Since Ay;; = —ﬁﬁyit—l + u;+ under Assumption 5,
Var (C)
1 n T 1 T 1
2 2
= = Z yi20+Z(ACiyit) ] - =3 Z y?o“!‘Z(Ayit) ] — He
i t=1 i =1
2 n T 1 n T 1
2 2
= Tara2 Zci Z Ayityir—1 + ) Zci Zyit_l — SHe2
nPTe" = S nT?6" = i 2

2 n T 2 n T
= ———= D> i) Yhat s > G ) Ul
— ’I’LTZ&Q ;C'LG'L ;ylt—l + n1/2Ta-2 ;Cl Zultyltfl

=1
1 & L& 1
t—== ZCZQ Zygtq — SHe2
nT?6" = = 2




Direct calculation shows that under Assumptions 1 — 4,

n T

2

 nT25° DD el —p —E(ebs),
i=1 t=1

n T
L Sevge L,
52 f it—1 p Hhe2
nT26" = o

and
T

2 n
—3 i itYit—1 = N (0,24, 5)
S S Yo = N 00

t=1
thereby giving the following result.
Theorem 7 Suppose that Assumptions 1 — 6 hold. Then,
VnT ((C) =N (—E (Cigi) s 2,[140’2) .

The asymptotic critical values of the test ¥,z (C) can be readily computed.
Let Z, denote the (1 — a)— quantile of the standard normal distribution, i.e.,
P(Z < —zy) = a, where Z ~ N (0,1). Then, the size a asymptotic critical
value ¢ (C, a) of the test ¥, (C) is

1/’ (C,O{) = RV 2,u“c7220m

and its asymptotic local power is

E (.0,
o (Eld) - ) (10)
\ 2”0,2
where ® (z) is the cumulative distribution function of Z.

>From (10), it is easy to find the power envelope, i.e., the values of ¢; for
which power is maximized. By the Cauchy-Schwarz inequality

(b E (Ci6i> - za S (b w - Za )
vV 2”0,2 2

and the upper bound of the power ® < Po2 _ za) is achieved with ¢; = 0;.

2

Then, by the Neyman-Pearson lemma, ¢ < % — za> is the power envelope.

We have the following theorem.

Theorem 8 Assume that the trends blg. in (1) are known. Suppose that As-
sumptions 1 — 6 hold. Then, the power envelope for testing for Hy in (3) against

Hy in (4) is (\ [Rez — za> , where iy o = E (02) and Z, is the (1—a)— quan-

3
tile of the standard normal distribution.
Note that a necessary condition for attaining the power envelope is ¢; = 6;

a.s., which in turn requires that the support of ¢; be the same as the support
of 02', i.e., Mc = Mg.



3.2 Power Comparison
3.2.1 The {— ratio Test
We start by investigating the t— ratio test of Quah (1994), Levin et al (2002),
and Moon and Perron (2003a), which is based on the pooled OLS estimator?.
Let "

Zi:1 Zt:l YitYit—1

T

lel 21 Yit-1

be the pooled OLS estimator and the corresponding ¢ statistic

>

3

Under the conditions assumed above, we have

Ho.1
t=N|—F2,1]).
< V2 >

The power of the ¢ test with size « is then
Ho1  _

| — -2z, ). 11

( V2 ) )

Remarks

(a) By the Cauchy-Schwarz inequality, it is straightforward to show that

@(%—ZQ)SQQ/@—%). (12)

In view of (12), the ¢ ratio test achieves optimal power only when the
alternative is homogeneous as in Hs, that is when 6; = 6 a.s., so that

E(0;) = \/E (67). Otherwise, the power of the ¢ ratio test is strictly less
than the optimal power. This implies that ¢t— ratio test is uniformly most
powerful test for testing Hy against Hy but not against H;. The result
is not surprising since the t ratio test is constructed based on the pooled
OLS estimator and pooling is efficient under the homogeneous alternative.

(b) Notice from (10) that the asymptotic local power envelope is determined
by pg 1, the mean of the local to unity parameters 6;. In the given formu-
lation, the local alternative is restricted to be one sided in Assumption 6.
Allowing for two-sided alternatives opens the possibility that , ; = 0 even
under the alternative hypothesis, in which case the power of the pooled
t— test is equivalent to size.

2When the error term wu;; is serially correlated, one can use a modified version of the pooled
OLS estimator. For details of this modification, refer to Moon and Perron (2003a).



3.2.2 A Common-Point Optimal Test with ¢; = ¢

As shown earlier, to achieve the power envelope, one needs to choose ¢; = 0; a.s.
for ¥, (C) . Denote this test ¥, (0). Of course, the test ¥, (0) is infeasible
because it is not possible to identify the distribution of #; in the panel and
generate a sequence from its distribution. Indeed, if the 6; were known, there
would of course be no need to test the null of a panel unit root.

One way of implementing the test U, (C) is to use randomly generated ¢;’s
from some domain that is considered relevant. The variates ¢; are independent
of 0; and the power of the test U, (C) is

q) H‘C,ll’l’e,l _ za . (13)
\ 2”0,2
Since pi.y < \/fic 2. the power (13) is bounded by

o (‘% - za) , (14)

which is achieved if we choose ¢; = ¢, where ¢ is any positive constant. We
denote this test U, ().

Remarks

(a) Not surprisingly, the power (14) of the test ,,1 (c) is identical to that of
the ¢ - ratio test in the previous section. Of course, both tests are based
on the homogeneous alternative hypothesis.

(b) Note that the power of the test ¥,r (¢) does not depend on c. The test
is optimal against the special homogeneous alternative hypothesis Hy for
any choice of ¢. This result is in contrast to the power of the point optimal
test for unit root time series in Elliot et al (1996), where the power of the
test does depend on the value of ¢. The reason is that the local alternative
in the panel unit root case is p,; = 1 — —7z= which is closer to the null
hypothesis than the alternative p., = 1 — £ that applies in the case where
there is only time series data. In effect, when we are this close to the null
hypothesis with a homogeneous local alternative, it suffices to use any
common local alternative in setting up the panel point optimal test.

4 Fixed Effects I: Incidental Parameters Case

The model we consider in this section assumes that the fixed effects b}g; = by;,
so that g; = 1 or that the incidental trend term by;t is known but the incidental
parameter term bg; is unknown. In this case, the model has the matrix form

Z = B,Gj +Y.



4.1 Power Envelope

This section derives the power envelope of panel unit root tests for Hy that
are invariant to the transformation Z — Z + B Gj, for arbitrary ;. Recall the
definition of the notation Ac¢ in (9). Define AcZ = (29, Acz1, ..., Aczr) and
AcByGy = (Bo, AcBys -, AcPy) - Let

L1 (C,By) = tr(AcZ — AcByGo)(AcZ — AcByGy) -

A (Gaussian) point optimal invariant test statistic for this fixed effects I case
can be constructed as follows (see, for example, Lehmann (1959), Dufour and
King (1991), and Elliott et al (1996)):

1 . . 1
Vietnt (C) = -2 [mln Lyt (C, By) — min L7 (0, 89) | — SHe,2
ag /@o B 2
For given ¢;’s, the point optimal invariant test, say ¥ fe1 7 (C), rejects the null
hypothesis for small values of Vie1 1 (C).
Letting bo; (¢i) = (A, GgA,Go) ™' (A GyAc, Z;) and Y (¢;) = Z;—Goboi (¢;) =

Y, -Gy boi (ci) — boi ) , we can rewrite Vye1 1 (C) as

Viet.nt (C)
. o, R
1y Yoo = pe X)) (L) = po s (@) L
- 2 N AN ~ - S He,
= <0> v “(0)) To-v,0) |
_ 1 i [ (AC,L — A, Gy (801 (ci) — b()i)>/ (AC,L — A, Go (502 (ci) — bOi))
5 =1 | - (AL — AGy (i)m (¢i) — bol‘))/ (AL — AGy (501‘ (i) — bm))
%:LLC,Q
= %erll,nT ((C> + %erllnT ((C) - %Mcga
where
Vit (C) = Y [(ALY,) (ALY,) - (AY,) (AY,)]
i1
1 & T (1 &,
= mz TZAyztyzt 1 +EZCZ' ﬁzyit—l .
i=1 =1 i—1 P

and

(AY,AG) (AGHAG,) ™ (AG(’)AY ) ]
Cz—Z)

Vietznr (C) = " [ (AL YIA,Go) (A, GhA,Go) ' (A, Gl

2
- 1 1
= Z y?o - c2 (yzo + —= 1/2 T (sz y'LO + =) Zyzt 1>

10



Then, we have

erl nT

_ ZC 2 _ o Y0\ (Y _ Yo
= n1/2 7 T yztyzt 1 \/— \/T \/T
n T
1 1 9
ﬁg ﬁ;yit11 2#c2+0 ( )

In the Appendix, we show that

LRl w

erl,nT ((C) =Var ((C) =+ Op (1) .

In view of Theorems 7 and 8 we have the following result.

and so

Theorem 9 Suppose Assumptions 1 — 6 hold and that by;t is known. Then, as
(n,T) — o0

(a) Viernr (C) = N (=E (cifh) , 2 2) -

(b) The power envelope for invariant testing of Hoy in (3) against Hy in (4)

is ® < “a 2 — 2a> , where g, =E (03) and Z, is the (1 —a)— quantile

of the stcmdard normal distribution.

Remarks

(a) As in the case of ¥,,p (c), we define the test W ge1 7 (¢) with a common
point ¢; = ¢, a constant. Then, the power of the test W se1 nr (c) is

o (‘%1 - za> . (16)

(b) With the incidental parameters in the model, Levin et al. (2002) proposed
a panel unit root test based on the pooled OLS estimator. Let Z;; =
zit—% 23;1 zigand Z;_1 = zit,l—% 23;1 z;t—1. The t - statistic proposed
by Levin et al. is asymptotically equivalent to the following ¢ - statistic

[T L+
o Zt:l Zi2t—1 (Ppool - 1)

?

Sk

11



where

n T -~ = nT ~2
At Doic1 Dopeq ZitZit—1 + 50
ppool - T -9 .
t=1 %it—1

According to Moon and Perron (2003b), the t* test has significant as-
ymptotic local power within n='/4T~! neighborhoods of unity. Since
U te1,nr (¢) has power in neighborhoods shrinking to unity at the faster
rate n~ /2T~ the t* test is inadmissible and asymptotically dominated

by \Ilfel,nT (C)

5 Fixed Effects II: Incidental Trends Case

This section considers the important practical case where the heterogeneous
linear trends b,g; are not observable and need to be estimated. We start by
considering local neighborhoods of unity that shrink at the rate ﬁ

Assumption 10 x=1/4 in (2).

We next relax Assumption 6 by allowing the time series of the panel y;; to
be either stationary or explosive under the alternative hypothesis.

Assumption 11 60; ~ iid with mean py and variance o3 on a bounded support
[~ Mg, Myg), where Mg, Myp > 0.

Under Assumption 11, we can re-express hypotheses (3) and (4) using the
second raw moment of 6; as follows:

Hp : Ho2 = 07 (17)

and
Hy : g > 0. (18)

After deriving the power envelope for this case, we investigate three panel unit
root tests, derive their asymptotic local power and compare them.

5.1 Power Envelope

This section derives the power envelope of panel unit root tests for H that are
invariant to the transformation Z — Z + 8*G’ for arbitrary 8. Let AcZ =
(Z()v ACZh sy ACZT) and ACﬁG/ = (590; A(Cﬂgl, ey ACﬁgt, sy ACﬁgT) - Define

L1 ((C, ﬁ) = tT’(ACz — A@BG/)(A@Z — AcﬂG/)/.

As above, a (Gaussian) point optimal invariant test statistic can be constructed
as:

1 . .
erng ((C) = ? |:II16111 LnT (C, B) - mﬁln LnT (0, ,6):|
+ /A Z G|+ nl/2 Zci wp2r + n Z Ci | WpaT,
i=1 i=1 =1

12



where

1Rt 2~ [t—1 1
s = 3 fZ( )5

=1

T T 2
1 t—1s—1 _ (t—1s—1\ 21 t—1\2 1
wpar = DD T mm(T’ T>_§T;<T>+§'

t=1 s=1

~

—

For given ¢;’s, the point optimal invariant test, say W ¢es o7 (C), rejects the null
hypothesis for small values of Vs 1 (C).
Let b; (¢;) = (Ao, G'A,G) (AL, G'ALZ) and Y, (¢;) = Z; — Ghi (¢) =
N /
Y. -G (bi (c;) — bi> , and rewrite Ve 1 (C) as

1 & 1 «— , 1~ 4
+<m20i>+<mZCi>wp2T+<;Z;ci>wp4T-

i=1
In the Appendix, we show that Ve n7 (C) can be written as

er2 nT (C) (19)

2
1 T ¢ 2 (i
Ly | (FrShide) +3 (% ‘LT)
3 (

when (n,T — oo0) with %/4 — 0.

Lemma 12 Under Assumptions 1 — 4, 10, and 11, the following hold:

2 2
T : . R
(a) sm 2imn Ci | F et Aty — (%) + (}’—\/‘%) + 02} =0, (1);

13



T
(b) wzz i €7 | — {2 (%) (T_\l/T Sr, %yit—l) -

= N (~&E (207), £E(c2)) s

2
1 T ¢ 2 i 1 T ¢
D | (S be) +2(28) (Fe S bvie)
() 7oz 2im1 G N2

op (1).
In view of these results, we have the following theorem.

Theorem 13 Suppose that Assumptions 1 — 4, 10, and 11. Then, Vieo nr (C) =
N (~50E (c367) . 5 E (c})) -

>From Theorem 13, we find that the size a asymptotic critical value is

_ Mc,4,
¢f62 ((C?O‘) =7y 45 Zas

and the asymptotic power is

P Lw,g (20)
6V5VE() )

By the Cauchy-Schwarz inequality, we have

1 E(c367) 1 _
(P(G_ng_za) §<I><6—\/g\/m-za). (21)

Again, maximal power, ® (6—\1/5 /To.1 — Ea) , is achieved by choosing ¢; = 6;.

According to the Neyman-Pearson lemma, ® (6—\1/5 /T4 — Za) is the power en-
velope. Summarizing, we have the following theorem.

Theorem 14 Suppose that the trends big: in (1) are unknown and Assumptions
1 -4, 10, and 11 hold. Then, the power envelope for testing the null hypothesis

Ho in (3) against the alternative hypothesis Hy in (4) is ® (6%/5 /Tty 4 — Za) ,

where pg 4 = E (9?) and Z, 18 the (1 — a)— quantile of the standard normal
distribution.

Remarks
(a) The power envelope of invariant tests of Hy in (3) against H; depends on

the fourth moment of the local to unity parameters ¢;s.
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(b) When the alternative hypothesis is the homogeneous alternative Hy (i.e.,
0; = 0), the power envelope is

1
O —=0" -2, ). 22
(ws ") 22
The power envelope is attained in this case by using ¢; = ¢ for any choice
of c.

(c) If the 0; are symmetrically distributed about 14 ; and k4 is the 4" cumu-

92 60’3 30’3+N4 }1/2 . .
lant, then /Iy, = pg 1 {1 + e + T and this will be close to

4
3o0g+k4g
1

. 602
u2 , when the ratios ¢ and
s Ho.1 0,1

clear from (21) that the test with ¢; = ¢ for any choice of ¢ will be close
to the power envelope.

are both small. In such cases, it is

5.2 Power Comparison

We compare the powers of three tests, which we consider in turn.

5.2.1 The Optimal Invariant Test of Ploberger and Phillips (2002)

We start with the optimal invariant panel unit root test proposed by Ploberger
and Phillips (2002). Let AG' = (go, Aga, ..., Agr) and AZ = (29, Azy, ..., Azr) .
Under the null hypothesis, AG and AZ deliver generalized least squares (GLS)
transformations of the trends G and the panel data Z, respectively. To construct
the test statistic, we first estimate the trend coeflicients 8 by

B =(AZAG) (AG'AG)™ ",
and detrend the panel data Z using this GLS estimate giving
E=27-BG.

Define

A (L

g tT (EE') — &2w1T> , (23)

1 t(1_1 . : :
where wip = 7 thl 7 (1 T) . In summation notation,

R
SN Zhio- wlTl , (24)

where

_ 1 t
Zig T = ﬁ |:(Zzt — Zjp) — T (ziT — Zio)] )

a maximal invariant statistic. In view of (23) and (24), we may interpret V, 1
as the standardized information of the GLS detrended panel data. The test
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U, »r proposed by Ploberger and Phillips (2002) rejects the null hypothesis Hy
for small values of V7.

To investigate the asymptotic power of ¥, ,,7, we first derive the asymptotic
distribution of Vg nr.

Lemma 15 Suppose Assumptions 1 — 4, 10, and 11 hold. Then, Vv =
N (—3510,2:75) -

Using Lemma 15, it is quite straightforward to find the size o asymptotic
critical values ¢, () of the test Wy ;7. For z,, the (1 — a)— quantile of Z is

1
by (a) = —nga,

and the asymptotic local power is

Moo  _
P —=-2z,1, 25
(6\/5 “) 25)
showing that the test ¥, ,,r has significant asymptotic power against the local
alternative H .

Remarks

(a) Notice that the asymptotic power of the test W, 7 is determined by the
second moment of 6;, py o, so that it relies on the variance of 0; as well as
the mean of 0;.

(b) According to Ploberger and Phillips (2002), the test ¥, ,r is an opti-
mal invariant test. Let Qg o7 (0) be the joint probability measure of
the data for the given ;s and let v be the probability measure on the
space of 0;. Ploberger and Phillips (2002) show that the test ¥, 7 is as-
ymptotically the optimal invariant test that maximizes the average power
[ (f ¥g.nrdQgnr () dv, a quantity which also represents the power of
¥, 7 against the Bayesian mixture f Qo,nr (0) dv.

(c) Comparing the power (25) of the test ¥, ,r to the power envelope is
straightforward. By the Cauchy-Schwarz inequality we have

o(854) <o)

The test ¥, ,,7 achieves the power envelope if the 0; are constant a.s., that
is, the power envelope is achieved against the special alternative hypothesis
H.

16



5.2.2 The LM Test in Moon and Phillips (2003)

The second test we investigate is the LM test proposed by Moon and Phillips
(2003), which is constructed in a fashion similar to Vj ,,r. The main difference
is that Moon and Phillips (2003) use ordinary least squares (OLS) to detrend
the data. To fix ideas, define Q¢ = Ir — Pg with P = G(G’GY1 G. Let
Dy =diag (1,T). and

1
Vonr = \/_25 (n_tr (ZQGZ/) - &2W2T> 5

) 5 T2
where
T T T
1 t 1 min (¢, s)
war = T TN hr (8, 5) .
t=1 t=1 s=1
1 & B
hr(t,s) = gDy (f ZDElgpg;DEl> D7'gs.
p=1
Define

a scaled version of the OLS detrended panel. Then, we can write

T
LSz, ]
=D Zhr —wr|,
To =

which can be interpreted as the standardized information of the detrended panel
data. The LM test, say ¥, 1, of Moon and Phillips (2003) is to reject the null
hypothesis Hy for small values of V, 7 (¢) .

The following theorem gives the limit distribution of V, ., (¢) .

1 n
Vo,nT = = Z
\/ﬁ =1

Lemma 16 Suppose Assumptions 1 — 4, 10, and 11 hold. Then, V,,7 =
1 11
N (= z3540,2 5305) -

The size a asymptotic critical value of ¥, ,,1, say ¢, (o), is given by

/11
¢o (O[) = wzaa

(I)(Me,z —Z)
w7t Y)

and the asymptotic power is

Remarks
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(a) The test ¥, 1 has significant asymptotic power against the local alterna-
tive Hy and its power depends on the second moment of 0;, py 5 just as
the power of the test Wy 7.

(b) We also find that the asymptotic power of the optimal invariant test ¥ ,,1

pg+os _ potos

dominates that of the test ¥, 7 because W < VAR This is perhaps

not surprising since the optimal invariant test ¥, ,r is based on GLS-
detrended data, while the test ¥, 7 is based on OLS-detrended data.

5.2.3 A Common-Point Optimal Invariant Test

As with the test ¥, (0), implementation of the test Ve 7 (©) that achieves
the power envelope is infeasible. If we use randomly generated c;s that are
independent of §; and the panel data z;, according to (20), the power of the

test Vieanr (C) is
1 peatgo
Pl ——7—2-—-2Z, . 26
(6\/5 \/:uc,4 ) ( )

Since pi. 5 < /T4, the power (26) is bounded by

o (6—\1/5M9’2 - za) , (27)

which is achieved when we choose ¢; = ¢ for Ve 7 (C) , where ¢ is any positive
constant. We denote this test Vieo nr(c).

Remarks

(a) The power (27) of the test Ve nr (c) is identical to that of the Ploberger-
Phillips optimal invariant test Vg 7.

(b) The power of the test Vieo 1 (¢) also does not depend on c. It is optimal
against the special homogeneous alternative hypothesis Hy for any choice
of c.

(c) As remarked earlier the test Vieanr(c) will achieve power close to the

.6 30
power envelope when the ratios u;ﬁ and %W are both small.
9,1 0,1

Remark To simplify analysis, the panel errors u;; in model (1) were assumed
to be iid across 7 and t. In empirical applications, we can expect the u;; to be
serially correlated and possibly heterogeneous across ¢ and sometimes even cross-
sectionally dependent. When the u;; are cross sectionally independent but not
identical and serially correlated, we may replace 62 in the test statistics with an
estimator of the cross-sectional average of the long-run variances of the u;;. An
example of such an estimator can be found in Moon and Perron (2003a). When
the data are cross section dependent through the presence of some unobservable
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common factors, one can apply the orthogonalization procedure proposed by
Moon and Perron (2003a) and Phillips and Sul (2003) to the panel data after
the removal of deterministic components, and then construct the tests discussed
here using the de-factored data. Alternatively, one can also apply the testing
procedure proposed by Bai and Ng (2001).

6 Simulations
This section reports the results of a small Monte Carlo experiment designed to

assess and compare the finite-sample properties of the tests presented earlier in
the paper. For this purpose, we use the following data generating process:

zit = bos + bist + Y,
Yit =  PYit—1 + Ui,
Yi0 = 0, bol‘, bh‘, Ut ~ ’LZd N (07 1) .

We consider both the incidental parameters case (b1; = 0) of section 4 and the
incidental trends case (by; # 0) of section 5.

We focus our analysis on three main questions. The first is the sensitivity
of the point-optimal invariant test to the choice of ¢;. The second is how far
the feasible and infeasible point-optimal tests are from the theoretical power
envelope in finite samples. Finally, we look at the impact of the distribution of
the local-to-unity parameters under the alternative hypothesis. Accordingly, we
consider the following nine distributions for the local-to-unity parameters:

0 =0 Vi (size),

1) 6; ~iidU [0,2],

2) 6; ~ iidU [0,4],

3) 0; ~ iidU [0, 8],

5) 0; ~ iidx? (2),

6) 0; ~ iidx? (4),

7

(0) 0
(1) 0;
(2) 0
(3) 0
(4) 0; ~ didx* (1),
(5) 0;
(6) 0
(7) 0, =0~U1I0,2],

8 =0~x2(1).

These distributions enable us to examine performance of the tests as the
mass of the distribution of the localizing parameters moves away from the null
hypothesis. We can also look at the effect of homogeneous versus heterogeneous
alternatives (case (1) versus (7), and case (4) versus (8)) together with the role
of the higher-order moments of the distribution. For instance, case (1) has the
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same mean as case (4) but smaller higher-order moments. The same situation
arises for cases (2) and (5), and cases (3) and (6).

We consider two values for n (10 and 30) and three values for 7' (100, 300,
and 500). All tests are carried out at the 5% significance level, and the number
of replications is set at 10,000.

Table 1 presents the results for the incidental parameters case. The tests
we consider are the infeasible point-optimal test with ¢; = 6; (the finite-sample
analog of the power envelope), our common point-optimal (CPO) invariant test
for three values of ¢, that is 1, 2, and 0.5, the point-optimal test with randomly
generated values of ¢;’s, and the t-ratio type test as in Moon and Perron (2003b).
The first panel provides the size and power predicted by the asymptotic theory
in section 4 using the moments of #; and ¢;. The other panels in the table report
the size and size-adjusted power of the tests for the various combinations of n

VFoz2

and T. In the first panel, the second column gives the ratio M which controls

how far away the asymptotic power of the CPO test is from the power envelope.
A high ratio implies that the power of the CPO test is much below the power
envelope. The main theoretical predictions for our simulation experiment are:

e The power envelope is higher for the y? alternatives than for the uniform
alternatives with the same mean. This is because the power envelope de-
pends on the second uncentered moment of #; and since the x? distribution
has fatter tails, its second moment is larger;

e The x? alternatives tend to be further below their power envelope than
the uniform alternatives;

e The power of the feasible CPO test is the same for the uniform and y?2
alternatives since power in this case depends only on the mean of 6;;

e There is substantial loss of power from using randomly-generated values
of ¢;;

e The t-test has no power beyond size: its rejection probability is the same
under the null and alternative hypotheses.

For the other panels of the table, the second column gives the expected value
of the autoregressive parameter implied by the distribution of the local-to-untiy
parameter and the values of n and T. As can be seen, the alternatives that we
look at are very close to 1 on average. The results match closely the theoretical
predictions qualitatively. The main conclusions are:

e The size properties of the point-optimal test appear to be mildly sensitive
to the choice of ¢. The test tends to underreject for ¢ = 1 and 0.5 and
to slightly overreject for ¢ = 2. The two tests with random ¢;’s tend to
overreject. This is most apparent for ¢; ~ U [0,8], a case where there is
quite severe size distortion;
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e However, in terms of power, the choice of ¢ is much less important, as
predicted by asymptotic theory. In fact, most of the variation is within
2 simulation standard deviations, and much of the difference is probably
due to experimental randomness;

e In all cases, power is much below what is predicted by theory and below
the power envelope defined by ¢; = 6;;

e However, in the homogeneous cases, there is less power difference between
the CPO tests and the optimal test. This is expected since the CPO test
is most powerful against these alternatives;

e Finally, despite the theoretical predictions that they should be equal, the
actual power for the x? alternatives is below that of the corresponding
uniform alternatives.

Table 2 reports the same information as Table 1 for the incidental trends case.
In addition to the above tests, we also consider the optimal test of Ploberger
and Phillips (2002) and the LM test of Moon and Phillips (2003). Once again,
the first panel gives the theoretical predictions for size and power using the as-
ymptotic theory. The second column gives the ratio %7 which controls the
distance between the power of the CPO test and the aéymptotic power enve-
lope. This distance tends to be much higher in this case than in the incidental
parameters case above.

Just as in unit root testing with time series models, power is much lower
when trends are present. In fact, power is much lower than what transpires in
the table since the local alternative approaches the null hypothesis at a slower
rate than for the incidental parameters case. Thus, for the same distribution of
the local-to-unity parameters, we have an alternative hypothesis that is further
away from unity than in Table 1.

The main theoretical predictions contained in the first panel for the inciden-
tal trends case are:

e In contrast to the incidental parameters case, the power of the CPO test
is higher for the x? alternatives than for the uniform ones since power
depends on higher-order moments in this case;

e The Moon and Phillips test, although dominated, is expected to perform
well;

e Once again the {-type ratio test has no power beyond size.

Simulation results in the remaining panels of table 2 do not conform as well
to the theoretical predictions as the incidental parameters case. Our findings
for this case are:

e The size properties of the point-optimal test are much more sensitive to
the choice of ¢ and values of n and T' than for the incidental parameters
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case. It is therefore difficult to come up with a good choice of ¢ based
on these results, although values between 1 and 2 seem to provide a good
balance for all values of n and T

e Both the Ploberger-Phillips and Moon-Phillips tests tend to underreject,
sometimes quite severely;

e The t-type test has good size properties;

e As in the incidental parameters case, the power properties of the CPO
test do not appear sensitive to the choice of c¢. There is a tendency for
¢ = 2 to achieve highest power, but all rejection probabilities are close to
one another for the three choices of ¢ considered;

e For cases (3), (5) and (6), the CPO test typically achieves higher power
in finite samples than the infeasible (asymptotically) optimal test. These
differences occur for the most distant alternatives;

e As discussed above and contrary to the incidental parameters case, the
fatter-tailed distributions have higher power than the corresponding uni-
form distributions for the two closest alternatives. For the alternatives
that are furthest away (cases (3) and (6)), the reverse is however true.
This is surprising but might be another sign that the departures in the
case of these distributions are such that they are less well approximated
by the local-to-unity world;

e In all cases, using randomly-generated values for ¢;’s distorts size and
reduces power and should not be used in practice;

e The Ploberger-Phillips test behaves in a similar way to the CPO test,
as predicted by the asymptotics. However, it almost always has a lower
size-adjusted power than the CPO test with ¢ = 2;

e The LM test of Moon and Phillips has good power but appears to be
slightly dominated by the other two tests, as again predicted by the theory;

e The t-type test has no power beyond size as shown by Moon and Perron
(2003a);

e When the alternative hypothesis is homogeneous (cases (7) and (8)), the
tests based on a common value of ¢; have higher power than for the corre-
sponding heterogeneous alternative case. This phenomenon is more pro-
nounced for the x? alternative hypothesis. The power properties of the
tests with randomly generated c; are not different in the homogeneous and
heterogeneous cases.

These results suggest that our asymptotic theory generally predicts well the
qualitative behavior of tests statistics in the vicinity of the panel unit root
null hypothesis. The presence of more complex deterministic components and
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increasing distance from the null hypothesis reduces the accuracy of the ana-
lytic results from asymptotic theory. The simulation findings generally support
the analytic results and strongly suggest that the use of the CPO test (and
the Ploberger-Phillips test in the trends case) improves power over the more
commonly-used t-ratio type statistics.

7 Conclusion

In terms of their asymptotic power functions, the Ploberger-Phillips (2002) test
and the point optimal test have good discriminatory power against a unit root
null in shrinking neighborhoods of unity. When the alternative is homogeneous
it is possible to attain the asymptotic power envelope and both the Ploberger-
Phillips test and the point optimal test are uniformly most powerful in this
case. Interestingly, the point optimal test has this property irrespective of the
common alternative point chosen to set up the test. This is in contrast to point
optimal tests of a unit root that are based solely on time series data (Elliot et.
al. 1996), where no test is uniformly most powerful and an arbitrary selection
of a common point is needed in the construction of the test.

An important empirical consequence of the present investigation is that in-
creasing the complexity of the fixed effects in a panel model inevitably reduces
the potential power of unit root tests. This reduction in power has a quanti-
tative manifestation in the radial order of the shrinking neighborhoods around
unity for which asymptotic power is non negligible. When there are no fixed
effects or constant fixed effects, tests have power in a neighborhood of unity of
order n~1/2T—1, When incidental trends are fitted, the tests only have power
in a larger neighborhood of order n=*/4T~1. A continuing reduction in power
is to be expected as higher order incidental trends are fitted in a panel model.
The situation is analogous to what happens in time series models where unit
root nonstationary data is fitted by a lagged variable and deterministic trends.
In such cases, both the lagged variable and the deterministic trends compete to
model the nonstationarity in the data with the upshot that the rate of conver-
gence is affected. In particular, Phillips (2001) showed that rate of convergence
to a unit root is slowed by the presence of increasing numbers of deterministic
regressors. In the panel model context, the present paper shows that discrim-
inatory power against a unit root is weakened as more complex deterministic
regressors are included in the panel model.
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8 Appendix: Technical Proofs

We let z;; (0) and y;; (0), respectively, denote the panel observations z;; and y;
that are generated by model (1) with p, = 1, that is, §; = 0. We also define
Z(0),Y (0), Y_;(0), respectively, in similar fashion from Z, Y, and Y_;. Also,
for notational simplicity, we write w;; = y;1. Finally, define

1 -1
h(r,s)-(l,r)( 1 f?rdr ) <1>—46T68+12T5.

fol rdr [, r?dr s

8.1 Preliminary Results

First, we introduce a lemma that is useful in the proof of the main results.
Suppose that ¢; are sequence of iid random variables whose supports are the
same of those of s and are independent of u;; for all i and ¢.

Lemma 17 Suppose that Assumptions 1 — 4, 10, and 11 hold. Then, the fol-
lowing hold as (n,T — o0) with Ag — 0.

n 2 E
(a) ﬁ Zi:l C? {T+ﬂ 25:1 {(yit — Yio) — % (yir — yio)} - wlT} =N (

n T T T
(b) ﬁ Zz’:l [% Zt:l y?t - % Zt:l 23:1 yityishT (t, 3) - WQT] =N <_

Proof of Lemma 17

Part (a): For notational simplicity let Yier = (yit — yio) — % (yiTr — yio) and
Yie,r (0) = (yie (0) = yi0 (0)) — % (yir (0) — yio (0)) . Using this notation, we de-
compose

T2102 Z {(yit — Yio) — % (vir — yio)} — wlT}

n T
2 9 1 B ~ B
=2 gz 2 Yarr (0) (Vi = Vi (0
+\/T_Li:102 (TQO.Q; t,T()( T t,T( )))
= I,+11,+111,, say.

Notice by a direct calculation that

2 1 = 2 1
¢ WZY”,T(O)*MQT =0l7 )
t=1
NG

Since %+ — 0, by applying Theorem 3 in Phillips and Moon (1999), we have

E

I,=N (07 4—15E (c;*)> . (28)

24

(c?@? (c-
90 15
BE(7) 11
120 ’ 6300

n T
1 1 _ _
i%,T (0) = wlT) + % Z o (TQO-Q Z (Yier = Yier (0))2>
i=1 t=1



For term I1,, by definition we have

1 -,
i
Il + 1140 + 11,3, say.

Notice by definition that

Yit — Yit (0)

t—1

p=0
0 fort

> (e -

:O’

~+
|

1

Il
=)

p

Z (yit — Yit (O))2>

—) Wi — i (0)) (er — ir (0)))

( ) Yir — YiT (0))2>

[t p
=1

(7

ntT

N

where we set u;o = y;0 for notational convenience. Recall that x =
and applying Corollary 1 in Phillips and Moon (1999), we have

(7))

I]ﬁl

I]ﬁQ

~

and

11@3

NT
E(e

_)p

(73
-, —2E 292/ / r—s)(l—s)
NONC

1
1
7‘2d7‘/ (1- r)2 dr = §E (03012) .
0

Combining the limits of 11,1, 11,2, and I1,3, we have

1

~

Sl

—p E(cf@f

~ 1
22
n ZC 0; To?
=1

n

1
2T

292)

2

[

2= 55

—E

>

(c?

25

t—1

23

p=

0?).

>

p=0

-1

60

= (7))

(= 8) dsdr = - F (202
/O(r s) dsdr-lQE(clel),

(58

dsdr = ——E

1

(c767)

By

1
T

up for t > 1

(29)
(29)

T-1

(15

(7)) (73
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Next, for II1,, write X;7 = ﬁ 23;1 Yie.r (0) (Yit’T —Yiur (0)) . Also de-
fine

and

(ﬁ ZZ::O Wi

Then, by (29), we have
2 « 1<
Il ~ —— > G0:iXvr + =Y 0] Xoir = —2I11, + 11,5, say.
n n
=1 i=1

A direct calculation shows that

FEIIl;
E (c36;) &
= 3/ ZIEXMT

- Czinl/leT T
£l TZ[—%)

= E(30,)n'/ 01 (/Or(r—s)ds—r/or(l—s)ds—r/OT(r—s)ds+r2/01(l—s)ds>dr

nl/4
10 (_T )

= o(1),
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sincefo1 (fOT (r—s)yds—r [, (1 —s)ds—rfor(r—s)ds—i—?"QfOl (1 —3)ds) dr =
0 and %/4 — 0 by Assumption 3. Also,

E (C?G?X%iT)

[(% ;7 Ouip> (ﬁ ZZ;%) (t_Tq uiq)r

t t 1 T—1 (T— 2
492 Z +E (T (\/_ Zp:(] ulp) (ﬁ Zq:O (Tq) UZQ)l

Ta2 P +E [ L (% Z;{:O u,p) (% Z:;})

1

= M for some finite constant M.
Therefore,

E(I11%) Var (I11,1) + (E (I11,))*

IN

1 n
o~ ; E (20,) E (XA7) + (EL)

= o) o (2 ~ou,

I, =o0,(1).

which yields

Next, applying Corollary 1 in Phillips and Moon (1999), we have

fo fo 2 dsdr — fol rfor (1—2s) 2dsd7“ ]

N 29>
111, p E(czel)l fO fO dgerrfO r2dr (fO 178 dS)

1 22
= _4_5E (Ci 62 ) .
Combining the limits of I3; and I35, we have

1
[y =y — = E (c767) . (31)

>From (28), (30), and (31), we have the required result for Part (a). W
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Part (b): In matrix notation write

02 Z T2 Zyzt T3 ZzyztyzshT t 8 — W2T‘|

) ﬁ(ﬁ t=1 s=1
= Vn (%tr (Y (0)QcY (0)') — w2T>

+\/_<T22

= Iy + 11, say.

tr (YQC,VY/) — WQT)

(YQeY' - Y (0) QaY (0)’))

Rewriting the term I in summation notation,

1 n 1 T
Ib:W;{ﬁ;yit(o T Zzyzt Yis (0) hr (2, 5)_W2T}

t=1 s=1

and noticing that

T
1
E(ﬁZMO ngzyu yis (0) b (1 s>>—02m,
t=1

t=1 s=1

we apply Theorem 3 in Phillips and Moon (1999) and deduce that

11
1 N{0,— ). 32
For I, we further decompose the term 1, into
1 / 2 /
1, = ——tr|(Y-Y (0 Y-Y (O ———tr (Y =Y (0 Y (0
b \/ET2O'2 r [( ( )) QG( ( ))} + \/’IETQO'Q r [( ( ))QG ( ) ]
= Iy + I 2, say.
Write
1 n T 1 n T T
2
Iy = m ; ; (it — yit (0)) *W ; ; ; Yit — Yit (0)) (Yis — is (0)) hr (L, 8) -
Then, by (29) and applying Corollary 1 in Phillips and Moon (1999), we have
1 n T
=3 it — it (0))
\/ﬁTgagizzltZI(yt yt())
1 n ) 1 T t—1 " D
RS )] o)
i=1 t=1 \p=0



and

ERAEEES () (b

1 1 rAs 17
- E(Gf)/o /0 /0 (rfp)(sfp)h(r,s)dpdsdr:mE(@?).

Therefore,

Iy — E(67). (33)

L
P 120

Next, in view of (29) with £ = %, we may have

2 & I &<
Iy = ——7— > 0 Xy + — > 07 Xoir + 0, (1),
i=1

i=1

where

1 A t—s 1 Tl s
XlzT—ﬁ;s_qu_(:)( T )Uzsuiq—ﬁ;;s_oqz_;( T )hT(tvp)uisuiQa
and

A direct calculation shows that

;] Tt f_ o TN tAp—1 ¢ s 1
_ 2 — — _
prr=o | 135 () B85 5 (7)) men]=o(7)
t=1 s=1 t=1p=1 s=0
because

1 r 1 1 rAD 1
=t [ [ o=sdsaero [ [0~ nomdsavir =0 (1),
0 Jo 0o Jo Jo T
and
1 r 1 1 rAD
/ / (r—s)dsdr — / / / (r — s) h(r,p) dsdpdr = 0.
0 Jo o Jo Jo
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Also,

EXi,
g L T t-le—l t @, .y
< AN () () Pl
t=1 2=1 s=0 y=0 ¢=0 2=0
g L. L T T t-1p=l z y
+ﬁZZZZZZZZ< )( )hT (t,p) hr (2, y) E [wistiquiztiw]
t=1 p=1z=1y=1 s=0 ¢=0 2=0 w=0
= 0().
Therefore
_#Zaixlﬁ = _#Zai<X1iT_EXliT)‘f‘#Zei(EXMT)

=1 =1 i=1

- o[k <0 (%) =

Next, by Corollary 1 in Phillips and Moon (1999), we have

1 n
WZ@?XQZ-T -, 92 [// r—3) 2 dsdr — /// (r —8)” h(r,p)dsdpdr
i=1

_ 2
= B ) 210°
Therefore, we have
1
210°

Combining the limits of the terms I, 11, and Ty in (32), (33), and (34),
respectively, we have the desired result for Part (b). W

IIy —, —E(07) = (34)

8.2 Proofs and Derivations of the Main Results

Proof of (15).
Split the term (15) as

S5 ) ()

- e () (57 ) e ke () (5 )

Notice that the first term is

S (2) (- 5) - e (o)} -0 ()




Next, from (29) we have

T-1 T—1 [T—p
yir _yir(0) 1 Z ( Tp _ 1) e — 1 (T-) i
VI VT TV 4 s T2 : n!/2T

Then, the second term is

T-1

1 1< 1 T—p 1 1
- et S (5 ) o () -0 ()
1=1

p=0

as required. W

Derivation of Vi 7 (C) in (19).
By definition, we write
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n T T 2
1 1 9 1 t—1 1 t—1
(rxe) s (wree) (4R T s ()
=1 =1 t=2 t=2
n T T
1 4 1 t—1s—1 t—1 s—1 2 (1
() (FRn T (7 ) 5
say,
where

Vie21,nT ((C) = Z [(AQXJ/ (Aq_z‘) - (Azi)l (Axi)]

= (AY,) AG (AG'AG) ' AG' (AY))
Ve © = [ _ 0 TTALG anrare) ) At Bt
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By definition,

2 &K [1& 1 e
Vie2inr (C) = A Z Ci (T Z Ayit%’t—l) + TR Z o Zyzgt—l'
i=1 t=1 =1 t=1

Next, denoting D = diag(v/T,1) and G = GD, we rewrite

Vieo2.n1 (C)
- Z:(%( L‘)'AG’) (%AG’AG)I (%AG” (AL-))

B \/T(AQXZ) AW(;) (%Aqémé)_l ( A (AQL)>

=1

Notice that

{( LAG (AL)) (2 (A2 86) - (Fraa6(8.1) (F (ALY A.6) |

1~ 1 0
Lagac - (10).
c? ci cf T
lA C'A. O — 1+2n11/2% ﬁ(m"_m(%Zt:l %))
ci ci = o 2 T T ¢ 2 ’
T F (= (F2lE) ANl ()
1 - Yio
—AG (AY,) =
JTA0 (AL < = (yir — yio) ) ’
iAcié/ (Ac7xz) — . Yio + _fL/TT (sz 1911) + == n1/2 T2 Zt 1 Yit—1
\/T VT (sz - yzo) n1/4 ﬁsz + 5 1/2 T\/_ Zt 1 Tyzt 1
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Computation of Vye221 .7 (C) : A direct calculation shows that

Vie221,n (C)

- 1/4ZCZ<(
k3 (
s (2 (

L (T

where £ 3" | Ryir = O, (1) for k=2, ..., 4.

,_\

%
Mﬂ
N[ =
S

|
i/
_|_
N~

£

5

Computation of Vie229 nr (C) :
>From a direct calculation we have

1 -1 1 -1
—AG'AG —(=A.G'A.G
(1050) '~ (52.0.0)
1 ci

0 L _ 1 + 1 C?
VT \ nl/2 2 ni/2 6 n3/4
1 T ¢ 2 ¢ 1 ¢

T (2 (T 2= T)) — 3wz T3

B A (e _1a 1
VT \ ni/% 2 nl/2 6 n3/4

1
+0 (a7a7 )

where O ( T /QT) holds uniformly across ¢ because the support of ¢}s is bounded.
Then,

Vte222.n1 (C)
1 < yir \’ yio \~
EE (o)
nt/ P VT VT
Y

where the o, (1) error holds as (n,T — oco) with %/4 — 0.
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Putting the terms in Vieo1, 01 (C) , Vie221,n7 (C), and Vieaso n7 (C) together,
we have the required result. H

Proof of Lemma 12
Part (a). First, notice from

y ylt 1= (pz 1) yith + 2p,yit—1uit + U?t fort > 1,

we have

YiT ? Yio 2 1 1 1
! — ! = ?—1—2 37 —I—Zi—g i,ui—i——guf
</—T) </—T) (P )Ttlytl thlytl t Ttl t

>From Ayit = (p; — 1) yit—1 + uit, we have

2% ;Aylyyzt 1= 2 Zyzt 1t 7 T Zy“f 1 Uit

Then,

25:02

T 2 2
2 § i .
T ZAyityitq - (y%) + (\y/%) + 62

nl/46

T 1 T 1 T
= 1/40.2 Zcz l_ Z —1 + 2 pz) T Zyit—lul't — (T Z’U,?t

i=1

B 1 2 52\ 4o nt/4 o (1
- e T;““_” +o (7)o (7)

where the last line holds because

noo (1
WZ;Q(M Zyztl T52 ZCZH T_Z:: = (

and

1 & 1 & 1 2 &
chi(lfpi)fzyit—luit:?m ZCz‘ ( Zyzt 1sz> = (
neo =1 nvto 4

Notice that
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where the second equality holds because % S % 23;1 (u? — %) = 0, (1),

LS et 31 w2 = 0, (1) and by Assumption 4 and the last equality holds

because "TM — 0 (Assumption 3). Therefore, we have all the required result

for Part (a). W

Part (b).
By Lemma 17(a) and Assumptions 4 and 3, we have

2
n T . T ¢ ; A
1 ZCQ (% Dim1 Vit _‘7271“ t=1 %) +3 {(y\/_%) — 6"
1/2452 ' ; _ .2
" - {2 (%) (7o7 i Frowr) - 0%
1
= N|(-—=F(c}0; ).
(~55E (@) 2 ()
Then, for the required result for Part (b), it remains to show that
Yio Yir —¥io \ _
nl/24 QZ < )( JT >—0p(1)7
which follows because
Yio YiT — Yio
e 22 () (57)
_ Yio yir (0) — yio Yio yir — yir (0)
- i () () vt () (4
1 1/4
- o (g (i)

where the last line holds because

() (20 - & (S () - oo

and by (29),




Under Assumption 4, we have

1 &y,
— Al | ——
né? ; ¢ (T\/T

and the required result for Part (c) follows by the WLLN (e.g. Corollary 1 in

Phillips and Moon (1999)). H

Proof of Lemma 15

Lemma 15 holds by Lemma 17(a) with ¢; = 1 and Assumption 4. B

Proof of Lemma 16

Notice that we can decomposey/n (—b=str (ZQgZ') — war) as

nT202

Vo,nT = \/E (

tr(YQgY') — ng) +

tr (YQgY")

nT?

Vi (-

Then, lemma 16 holds by Lemma 17(b) and Assumption 4. H
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Table 1.Size and size-adjusted power of tests - Incidental parameters case
DGP: z; = bg; + Z?t
0 _ 0; 0
Zit = (1 - %T) Zit—1 T €it

n

b()z', €t ~ 1idN (0, 1)

Theoretical values

\/m/ue,l ci=0; ci=1 c=2 =05 ci~U[0,4 ¢ ~U0,8 ¢ test

0; = 0 (size) 5.0 5.0 5.0 5.0 5.0 5.0 5.0
0; ~U0,2] 1.155 20.4 17.4 17.4 17.4 15.1 15.1 5.0
0; ~ U [0,4] 1.155 49.5 40.9 40.9 40.9 33.7 33.7 5.0
0, ~U0,8] 1.155 94.7 88.2 88.2 88.2 78.9 78.9 5.0
0; ~ x> (1) 1.732 33.7 17.4 17.4 17.4 15.1 15.1 5.0
0; ~x2(2) 1.414 63.9 409 409 40.9 33.7 33.7 5.0
i ~ X2 (4) 1.225 96.6 88.2 88.2 88.2 78.9 78.9 5.0
0, =60~U]I0,2] 1.155 20.4 20.4 20.4 20.4 15.1 15.1 5.0
0, =60 ~x>(1) 1.732 33.7 337 337 33.7 15.1 15.1 5.0
n =10, T = 100
E(pz) C; = (91 C; = 1 C; = 2 C; = 0.5 C; ~ U [0, 4] C; ~ U [0, 8} t test
0; = 0 (size) 1 - 3.0 5.3 1.8 5.6 15.3 4.6
0; ~U0,2] 0.9968 14.4 12.6 13.4 13.2 11.7 11.6 3.8
0; ~ U [0,4] 0.9937 29.8 24.9 25.2 25.1 22.0 22.3 2.2
0, ~U0,8] 0.9874 66.9 51.9 52.6 51.7 45.0 44.1 1.1
0; ~ x> (1) 0.9968 17.2 11.3 114 12.0 11.3 11.0 3.9
0; ~ X2 (2) 0.9937 32.1 22.3 22.7 21.5 20.0 19.3 2.7
0; ~ x* (4) 0.9874 60.8 49.7 51.2 49.1 43.7 43.8 1.1
0; =0~UI0,2] 0.9968 15.4 13.9 13.6 14.4 12.6 12.2 3.7
0; =0~ X2 (1) 0.9968 17.4 17.1 16.6 16.6 14.8 14.1 3.6
n=230,T =100
E (pz) C; = (91 C; = 1 C; = 2 C; = 0.5 C; ~ U [0, 4] C; ~ U [0, 8} t test
0; =0 (size) 1 - 4.2 5.6 3.5 6.1 11.2 5.1
0, ~U0,2] 0.9982 16.2 14.1 14.5 14.4 12.3 12.1 4.1
0; ~ U [0,4] 0.9963 38.0 29.3 29.8 30.6 24.9 24.6 3.0
0; ~ U0, 8] 0.9927 82.6 64.7 65.3 65.0 54.6 53.7 1.2
0; ~ x> (1) 0.9982 20.2 13.6 13.3 12.5 11.7 1.0 3.7
0 ~ x*(2) 0.9963  41.0 266 264 27.1 21.8 22.0 2.7
0; ~ x* (4) 0.9927 792 631  63.5 62.8 52.8 52.0 1.4
0, =0~UI0,2] 0.9982 16.9 15.5 15.8 16.3 13.1 13.5 4.0
0;=0~x*(1) 09982 187 17.8  17.8 18.4 16.1 15.3 3.7
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n =10, T = 300
E(p) c=0; ci=1 c¢=2 ¢=05 c~U[0,4 ¢ ~UI[0,8 {test

1 - 3.0 5.5 1.8 5.5 14.7 4.6
0.9989 13.9 12.2 11.6 12.4 11.8 11.4 3.7
0.9979 30.1 23.8 25.0 24.8 22.3 21.8 2.4
0.9958 65.9 50.8 52.7 51.9 46.2 45.0 0.9
0.9989 17.7 10.6 11.1 11.7 10.4 11.4 4.0
0.9979 31.2 20.9 21.3 22.1 20.4 19.9 2.6
0.9958 59.9 48.4 50.2 48.7 44.2 43.2 1.0
0.9989 15.3 13.2 13.2 14.2 13.4 12.7 3.7
0.9989 18.3 15.4 15.8 15.7 14.7 14.3 3.9

n =30, T = 300

E(p,)) c=0; ¢=1 ¢=2 ¢=05 ¢~U[0,4 ¢ ~U|0,8 ttest

1 - 4.6 6.0 3.5 5.7 10.1 4.8
0.9994 15.3 13.3 13.4 14.7 13.1 13.4 4.3
0.9988 37.1 29.1 29.2 30.9 25.5 25.6 3.3
0.9976 82.7 63.5 63.7 65.6 57.3 55.9 1.3
0.9994 20.2 12.2 12.1 13.9 12.7 12.4 4.0
0.9988 40.7 25.1 25.3 27.7 24.0 22.8 2.8
0.9976 80.3 61.6 61.1 63.7 54.5 53.6 1.6
0.9994 16.1 15.3 15.5 16.6 15.1 14.0 3.8
0.9994 18.6 17.5 17.8 18.0 16.7 16.4 4.1

n =10, T = 500

E(pz) C; = (91 C; = 1 C; = 2 C; = 0.5 C; ~ U [0, 4] C; ~ U [0, 8} t test

1 - 3.0 5.3 1.8 5.4 14.2 4.6
0.9994 13.9 13.1 13.4 14.2 12.8 11.3 3.3
0.9987 29.5 25.7 25.7 25.5 21.6 21.4 2.1
0.9975 66.3 52.5 54.9 53.0 45.6 44.4 0.8
0.9994 16.9 11.8 12.2 12.2 11.0 11.1 3.8
0.9987 28.9 21.9 23.8 22.7 20.0 20.0 2.6
0.9975 61.5 50.5 52.3 51.5 44.0 42.6 0.8
0.9994 15.1 14.3 14.9 15.3 12.8 12.5 3.6
0.9994 18.2 16.5 17.0 16.8 14.7 13.3 3.8

n =30, T = 500

E(p,) =0, =1 ¢=2 ¢=05 ¢~U[0,4 ¢~U]|0,8 ttest

1 - 4.0 5.5 3.7 5.8 10.2 4.6
0.9996 16.2 14.3 14.5 14.3 12.5 12.5 4.3
0.9993 38.0 30.9 30.4 30.1 25.2 24.8 3.3
0.9985 81.9 66.8 65.8 65.0 55.2 55.0 1.5
0.9996 21.5 13.5 13.2 12.9 11.5 12.1 4.8
0.9993 41.6 27.4 26.0 26.7 22.0 22.0 3.0
0.9985 81.7 63.7 63.6 63.6 53.9 52.0 1.7
0.9996 17.0 16.5 16.4 16.1 13.7 13.0 4.4
0.9996 18.7 18.7 18.1 18.6 15.9 15.6 4.4
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Table 2.

Size and size-adjusted power of tests - Incidental trends case
DGP: z;; = bg; + byt + Z?t

0 _
zit—(l— 1

0;

) 21+

€it

boz', b1i7 Ez': ~ 11dIN (0, 1)

Theoretical values

\//TA/ Moo Ci=0; ci=1 ¢=2 ¢=05 c¢~U [0,4] ¢ ~UJ[0,8] Ploberger-Phillips Moon-Phillips ¢ test
0; = 0 (size) - 5.0 5.0 5.0 5.0 5.0 5.0 5.0 5.0 5.0
0, ~U [0,2] 1.342 6.5 6.1 6.1 6.1 5.8 5.8 6.1 5.8 5.0
0; ~U0,4] 1.342 13.3 10.6 10.6 10.6 8.9 8.9 10.6 9.0 5.0
0, ~U0,8] 1.342 68.7 47.8 47.8 47.8 32.3 32.3 47.8 33.4 5.0
0; ~ x* (1) 3.416 18.9 7.8 7.8 7.8 7.0 7.0 7.8 7.0 5.0
0 ~ X2 (2) 2.449 427 147 147 147 11.5 11.5 14.7 11.7 5.0
6; ~ X2 (4) 1.826 94.7 55.7 55.7 55.7 37.8 37.8 55.7 39.1 5.0
0, =60~U]I0,2] 1.342 6.5 6.5 6.5 6.5 5.8 5.8 6.1 5.8 5.0
0:=0~x2(1) 3.416 189 189 189 189 7.0 7.0 7.8 7.0 5.0
n =10, T =100
E(p,) =0, ¢=1 ¢=2 ¢=05 ¢~U[0,4 ¢ ~U[0,8 Ploberger-Phillips Moon-Phillips ¢ test
0; = 0 (size) 1 - 11.9 1.4 25.8 32.3 0.7 1.4 1.0 6.3
0; ~U0,2] 0.9944 6.3 6.0 5.9 5.9 5.1 5.4 5.7 5.6 4.5
0; ~ U [0,4] 0.9888 8.7 8.3 8.7 8.2 6.0 6.4 7.9 7.3 4.7
0, ~U0,8] 0.9775 9.3 18.4 19.0 16.4 8.0 8.9 18.6 15.1 3.2
0; ~ X2 (1) 0.9944 6.9 6.5 6.6 6.2 5.5 5.5 6.6 5.4 4.9
0; ~ X2 (2) 0.9888 7.3 8.9 9.2 8.7 6.3 6.6 9.0 8.1 4.6
6; ~ X2 (4) 0.9775 7.9 17.5 18.7 16.0 8.4 8.9 18.0 14.5 3.3
0; =0~UI0,2] 0.9944 6.5 6.2 6.0 5.8 6.1 5.9 5.9 5.6 5.1
0 =0~x2(1) 09944 6.6 80 76 7.2 6.0 5.7 7.3 6.8 48



n =30, T = 100

E(p,) =0, =1 ¢=2 ¢=05 ¢~U[0,4 ¢ ~U[0,8 Ploberger-Phillips Moon-Phillips ¢ test

0; = (size) 1 - 21.4 6.4 41.8 46.4 9.2 2.3 1.5 6.9
0; ~U0,2] 0.9957 6.4 6.4 5.8 5.5 5.0 5.3 6.3 6.1 5.3
0; ~ U 0,4] 0.9915 11.1 8.9 8.8 7.8 5.5 6.2 9.9 8.5 5.4
0;, ~U [0, 8] 0.9829 16.2 22.1 22.6 18.7 7.3 9.8 23.4 18.7 4.2
0; ~ X2 (1) 0.9957 8.1 6.4 6.4 6.1 4.8 5.1 7.0 6.1 5.1
0; ~ X2 (2) 0.9915 8.8 10.3 9.5 8.6 5.6 6.6 10.1 8.8 4.6
9 ~x2(4) 09829 96 222 214 175 7.5 9.4 23.4 18.7 3.5
0, =0~UI0,2] 0.9957 6.6 6.2 5.8 5.5 5.4 4.8 6.9 6.0 5.1
0;, =0~ X2 (1) 0.9957 7.4 8.2 7.4 7.8 5.6 5.3 8.7 7.3 5.0
n =10, T = 300
E(p,) =0, =1 ¢=2 ¢=05 ¢~U[0,4 ¢ ~U[0,8 Ploberger-Phillips Moon-Phillips ¢ test
0;, =0 (Size) 1 - 3.5 0.1 8.8 31.1 0.7 1.5 2.2 5.2
0, ~U0,2] 0.9981 6.5 5.5 5.9 5.4 5.7 5.3 5.9 5.3 4.9
0; ~U0,4] 0.9962 8.1 7.9 7.6 7.6 6.6 6.4 8.7 7.1 4.2
0; ~U|0,8] 0.9925 9.3 18.1 18.0 16.6 8.4 8.2 18.4 14.4 2.6
6; ~ X2 (1) 0.9981 6.6 6.9 6.4 5.8 5.7 5.8 6.5 5.7 4.9
0; ~ X2 (2) 0.9962 7.0 8.9 8.8 7.7 6.1 6.1 9.2 7.9 4.2
0; ~ XZ (4) 0.9925 8.1 17.1 17.6 15.8 8.6 8.3 17.9 14.5 2.7
0, =0~UI0,2] 0.9981 6.5 5.9 6.5 5.2 5.3 5.2 5.7 5.6 4.5
0, =0~ X2 (1) 0.9981 6.7 7.4 6.9 6.7 5.5 5.3 7.6 6.3 4.6
n =30, T = 300
E(p,) =0, ¢=1 ¢=2 ¢=05 ¢~U[0,4 ¢ ~U[0,8 Ploberger-Phillips Moon-Phillips ¢ test
g, = 0 (size) 1 - 74 LS 115 156 75 33 2.8 5.8
0; ~U0,2] 0.9986 6.4 6.1 6.0 5.8 5.9 5.9 6.0 6.2 4.4
0; ~U0,4] 0.9972 10.2 9.5 8.8 8.6 5.4 6.4 8.3 8.4 4.3
0; ~U [0, 8] 0.9942 14.6 21.5 23.0 22.2 7.9 10.2 21.8 18.7 3.2
0; ~ X2 (1) 0.9986 7.5 6.1 6.6 6.3 5.4 6.2 6.1 6.7 4.1
6; ~ X2 (2) 0.9972 7.9 8.9 9.8 9.4 6.3 6.8 9.2 9.6 4.3
0; ~ XZ (4) 0.9942 8.8 21.8 23.1 21.3 7.3 10.0 21.7 18.6 2.9

0:=60~U[0,2] 09986 6.9 6.1 6.2 5.8 5.2 5.6 5.5 6.2 4.1
0:=0~x>(1) 0998 7.0 74 7.5 7.5 5.5 6.4 7.2 7.9 45



n =10, T = 500

E(p,) =0, =1 ¢=2 ¢=05 ¢~U[0,4 ¢ ~U[0,8 Ploberger-Phillips Moon-Phillips ¢ test

0; = (size) 1 - 2.4 0.1 5.1 31.6 0.5 1.4 2.3 4.7
0; ~U0,2] 0.9989 6.0 5.8 6.3 5.7 5.4 5.3 6.4 5.5 5.2
0; ~ U 0,4] 0.9978 8.5 7.6 8.9 8.1 5.9 6.5 8.8 7.7 4.3
0, ~U0,8] 0.9955 7.3 17.6 19.7 17.5 7.6 8.4 19.9 15.1 2.7
0; ~ X2 (1) 0.9989 6.3 6.0 6.7 6.1 5.1 5.4 7.3 6.0 4.9
0; ~ X2 (2) 0.9978 6.9 8.6 9.5 8.7 5.9 6.3 9.1 7.9 4.2
0 ~x2(4) 09955 7.6 162 189  17.1 7.4 8.3 19.0 14.2 2.7
0, =0~UI0,2] 0.9989 6.4 5.7 6.2 6.2 5.3 5.2 6.2 5.7 5.1
0;, =0~ X2 (1) 0.9989 6.6 7.0 8.0 7.4 5.4 5.6 7.9 6.8 4.7
n =30, T = 500
E(p,) =0, =1 ¢=2 ¢=05 ¢~U[0,4 ¢ ~U[0,8 Ploberger-Phillips Moon-Phillips ¢ test
9: = 0 (size) 1 - 5.3 14 9.7 15.3 75 2.9 32 5.3
0, ~U0,2] 0.9991 6.2 5.9 6.1 5.5 5.3 5.8 6.3 5.8 5.0
0; ~U0,4] 0.9983 9.6 8.4 9.1 8.5 6.0 6.4 8.4 7.3 4.5
0, ~U [0,8] 0.9966 15.3 21.9 23.6 22.2 6.9 10.3 23.1 18.3 2.9
6; ~ X2 (1) 0.9991 7.0 6.5 7.1 6.2 5.6 6.0 7.0 5.8 5.0
0; ~ X2 (2) 0.9983 8.3 9.2 10.3 9.1 6.0 6.4 9.5 8.4 4.3
0; ~ XZ (4) 0.9966 9.1 21.3 23.2 21.7 7.2 10.0 22.6 17.5 3.2
0, =0~UI0,2] 0.9991 6.3 6.1 6.1 5.9 5.2 5.6 6.4 5.6 4.7

0; =60 ~x>(1) 0.9991 7.2 7.8 8.0 7.8 5.5 5.7 7.5 6.8 4.6





