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Abstract

This paper studies testing for a unit root for large n and T' panels in which the
cross-sectional units are correlated. To model this cross-sectional correlation, we
assume that the data is generated by an unknown number of unobservable common
factors. We propose unit root tests in this environment and derive their (Gaussian)
asymptotic distribution under the null hypothesis of a unit root and local alterna-
tives. We show that these tests have significant asympotitic power when the model
has no incidental trends. However, when there are incidental trends in the model
and it is necessary to remove heterogeneous deterministic components, we show that
these tests have no power against the same local alternatives. Through Monte Carlo
simulations, we provide evidence on the finite sample properties of these new tests.

1 Introduction

In this paper we propose several unit root test statistics for panels in which cross-sections
are correlated. Over the last few years, there has been a lot of research on nonstationary
panels with large cross section and time series dimensions in particular in the context of
testing for the presence of a unit root. A common feature of these studies is the restric-
tion that the cross-sections are independent. Under this assumption, various central limit
theorems can be applied to obtain test statistics with an asymptotic normal distribu-
tion. However, this cross sectional independence assumption is quite restrictive in many
empirical applications in macroeconomics, finance or international finance. For example,
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consider a panel of cross-country real exchange rates. As argued by O’Connell (1998),
due to the strong links across markets and the use of a numeraire country in defining real
exchange rates, real exchange rates should have high cross-correlation both in the short
run and in the long run.

To model this cross sectional dependence, we consider an approximate linear dynamic
factor model in which the panel data is generated by both idiosyncratic shocks and unob-
servable dynamic factors that are common to all the individual units but to which each
individual reacts heterogeneously.

When common factors exist in the panel, tests that suppose independence among
cross-sectional units will suffer size distortions. To correct this problem, we propose test
statistics that use de-factored panel data obtained by projecting the panel data onto the
space orthogonal to the factor loadings. To estimate the matrix of factor loadings, we use
a modified version of the principal component method used in Stock and Watson (1998)
and Bai and Ng ( 2002, 2003). A similar orthogonalization procedure is also suggested in
Phillips and Sul (2002),

Considering cross sectional dependence in a panel context is quite new. Recently, Chen
and Conley (2001) study a semiparametric spatial model for fixed n and large T' panels
in which the time series component is stationary and mixing. For nonstationary panels,
Chang (2002) develops a nonlinear instrument variable unit root test for a panel with large
T and fixed n and Choi (2002) proposes a unit root test based on a Fisher-type statistic
for panels with large n and 7. In independent work, Bai and Ng (2003) and Phillips and
Sul (2002) also use a factor structure to model cross-sectional dependence in panels and
to construct unit root tests in such a setting.

An important contribution of this paper is the study of the behavior of our test statis-
tics under local alternative hypotheses. We show that our tests have power against al-
ternatives that shrink towards the unit root at rate 1/y/nT under some circumstances.
However, we also show that our tests do not have power in such a neighborhood in the
case where heterogeneous deterministic trends exist in the data, the so-called incidental
trends problem (cf. Moon and Phillips, 1999). We also provide an upper bound on the
rate at which the alternative hypothesis can drift towards the null for nontrivial power to
exist.

The paper is organized as follows. Section 2 introduces the model and proposes various
test statistics for a unit root and finds their asymptotic properties under local alternatives.
In section 3, we show that the proposed tests have no power against the same local
alternatives when deterministic components have to be removed. In Section 4 we compare
finite sample properties of our proposed panel unit test statistics, while section 5 concludes
The main technical proofs and derivations are in the Appendix; the remaining proffs can
be found in a companion paper, Moon and Perron (2003) .

A word on notation. We use notation M to denote a generic constant that is finite.
For an n x K matrix 8, Pg = (8 (ﬁ’ﬁ)_l B and Qg = I — Pg. For a matrix A, A > 0
denotes that A is positive definite. For a matrix A, ||A|| denotes the Euclidean norm,

Al = (tr (A7A))"/>.

2 A Simple Model

The model we will consider is the dynamic panel model:

0
Zit = O+ 2 (1)
0o _ 0 4
Zig = PiZig—1 T Yits



where we set the initial observations 2% = 0 for all i. The model allows for fixed effects
and is therefore suitable for use with panels of macroeconomic data that do not exhibit
deterministic trends such as most real exchange rates, interest rates, or inflation rates.
Deterministic trends, relevant for variables such as GDP or industrial production, will be
considered in the next section. We are interested in testing the null hypothesis:

Hy:p;,=1 Vi
against the stationary alternative hypothesis:
Hy,:p; <1 forsome ¢

In order to simultaneously handle unit roots and local alternatives, we will nest these two
hypotheses using the near unit root model:
0.
p;=1- \/HZT7 (2)

where 6; is a non-negative random variable.

Assumption 1 The random variable 0; is iid with mean py and finite support on [0, My).!
With this assumption, the hypotheses we will consider are
Ho : g =0.
against the local alternative
H : py > 0.
Under Assumption 1, the null hypothesis is equivalent to
Hy : 6; = 0 for all 4.

The near unit root model has been extensively used in the univariate literature starting
with Phillips (1987) to study the behavior of test statistics under local alternatives. The
rate of approach of the local alternative to the null hypothesis is faster in our case because
the use of panel data will entail faster convergence of the estimator of the autoregressive
parameter as we will see below.

To model the correlation among the cross-sectional units, we will assume that the error
term in (1) follows an approximate factor model:

yie = BY ) + e, (3)

where f} are K —vectors of unobservable random factors, ﬂ? are nonrandom factor loading
coefficient vectors (also K —vectors), e;; are idiosyncratic shocks, and the number of factors
K is possibly unknown. The factor model in (3) is introduced to model cross sectional
dependence. The common factors f play an important role in reducing the dimensionality
of the cross sectional covariance structure of y;;. The extent of the correlation is determined
by the factor loading coefficients ﬁ?, i.e.,

E (yz’tyjt) = 5?/E (f? ,50/) 59-

1 Assuming the upper bound My is for convenience. It could be relaxed at the expense of technical
complexity and assuming higher moments.




Assumption 2 (i) e; = Z;io d;jvit—j, where vy are 1d(0,1) across i and over t, have
a finite eighth moment.

(i) inf; Z;’io d;; > 0. -

(iii) Let dj = sup; |dij| . Then, 3772, j"d; < M for some m > 1.

Assumption 3 (i) f) = Z;io cjui—j, where c; are K x K matrices of real numbers and
the K-vectors u; are iid(0, [x) across i and over t.

(i) 3520 3™ llejll < M for some m > 1.
Assumption 4 0;,u;, and vj, are independent.
Assumption 5 1 < K < K < oo, where K is known.

Assumption 6 Asn — oo, LS 3B — %5 >0.

Assumption 7 As T — 0o, = >/, fOf¥ —, % > 0.

2
2 _ 2 _ S B (e 0 g ;
Define 02 ; = Y272 d7;, w2, = (Zj:() dza) cand A = D7 > 2o dijdij. In this
notation, O'z’i signifies the variance of e;;, wii the long-run variance of e;;, and A.; the
one-sided long-run variance of e;;.

Assumption 8 Asn — oo,
(i) w? = < im,, ) D we ; (> 0) is well defined.

(ii) ¢4 = hmn =Y we i (> 0) is well defined.
(iii) 02 = < lim,, m ZL L0? i (>0) is well defined.
(iv) Ae e i L = ST Aeyi is well defined.

(2

Assumption 9 sup; E (a?) < oc.
Remarks

(a) In the special case where 60 = ﬁ for all 4, j, our factor model becomes an error
component model with time spe(nﬁc effect f2 as studied in Choi (2002). Phillips
and Sul (2002) study a similar model with a single factor (K = 1). In addition to
unit root testing using Hausman-type and Fisher-type tests, they also analyze me-
dian unbiased estimation and general homogeneity hypotheses. Finally, Bai and Ng
(2003) develop a testing methodology for dynamic panels with factors that allows
for stationary and nonstationary factors and idiosyncratic errors. Their methodol-
ogy allows to test separately the nonstationarity of the factors and the idiosyncratic
components.

(b) Under Assumption 3, it follows that

(Tr]

th = By (r (4)

Bf( ) is a K-vector Brownian motion with covariance Q; = c¢(1)c(1)’, ¢(1) =
S j=1¢-In this paper, we do not require that the long-run covariance matrix of the
factors, {2¢, be of full rank. The positive definiteness restriction is imposed on the



variance matrix of f;, ¥ (see Assumption 7). This implies that under the null it
is possible to have cointegrating relations among the nonstationary factors. Also,
note under Assumption 7 that f7 is allowed to contain some lagged variables: e.g.,
2 = (g, gt,l)/ for some random variable g; with finite second moments. Then,
under the null hypothesis, we have F? = (Gt,Gy_1), where FO = S\ 2, G; =
22:1 gs- In this case, G; and G;_1 are cointegrated in the sense that Gy, —G;_1 = ¢¢
is stationary.

However, the restrictions in Assumption 2 exclude the possibility of cointegrating re-
lations in the integrated idiosyncratic shocks F;; = Zzzl eis. The assumed indepen-
dence across ¢ implies that the covariance matrix of the stacked F;; is block-diagonal
and Assumption 2 (i7) ensures that each element along the diagonal is non-zero.

Assumptions 2 and 3 assume that the random factors f and the idiosyncratic
shocks e;; are stationary linear processes and that they are independent of each
other. These assumptions correspond to Assumption 1 of Forni et al (2000) but
are more restrictive than Assumptions C and D of Bai and Ng (2002), Assumptions
C, D, and E of Bai (2001), or Condition M of Stock and Watson (1998). The
conditions assumed in Bai and Ng (2002), Bai (2001), or Stock and Watson (1998)
do mnot restrict f? and e;; to be linear processes and allow for weak dependence
between e;; and f? and among the cross sectional units of e;;. The assumption of
linear processes for e;; and f? is convenient yet very general in terms of the temporal
dependence allowed and allows avoiding high level assumptions such as Assumption
E of Bai (2001). Also, assuming independence between e;; and f? is not likely to
be too restrictive considering the nature of the factor model and it could be relaxed
as in, for example, Bai and Ng (2002) at the expense of complexity of the proofs.

Assumptions 6 and 7 are standard assumptions in factor models (e.g., Bai and Ng,
2002). An implication of Assumption 6 is that the contribution from each factor
to at least one of the y;; is significant, and in this context it may correspond to
Assumption 4 of Forni et al (2000). However, this assumption does not impose that
all cross-sections respond to all factors so that some of the factor loadings could be
Z€ero.

Assumption 5 assumes that there exists at least a common factor in y;; and the
number of factors, K, is bounded by a finite number K that is assumed to be
known. In this paper, we first discuss testing the null hypothesis of a unit root
assuming that K is known, and then later we discuss how to estimate consistently
the true number of factors.

Assumption 9 restricts the moment of the incidental parameters «;. Under this
assumption, since the stochastic trend term 2}, dominates the incidental parameters,
the presence of the incidental parameters can be ignored as we will see. In Section
3, we investigate a model that does not assume the restriction in Assumption 9.



We now define our matrix notation: Define

I
y = (gla 7Qn) ’ gz = (yila -"7yiT) y
e = (le"'?gn)7 QL - (eilv'-'veiT)ly
Z = (Zy,.2,), Z; = (21, zi1)’
Z*l = (Zfl,la "'7271,11) ; Zflﬂ‘ = (Zi(), "'7ZiT71)/7
I
Z° = (20,..2)), Z) = (2. 20)
I
Zgl = (Z(ll,lv "'7Z(ll,n)7 le,i = (2?07---7Z?T71) )

/

fo = (f{)7 7f%) ’ ﬁo = ( (1)7 75?1)/3 a = (a17 "'7an)/ .
Define

p(L) = dZCLg (p1L7 7an) )

where L denotes the lag operator. Write I = (1,...,1)", T x 1 vector of ones. Using our
matrix notation, we rewrite the model as

Z = lrd + 2, (5)
A (In—p(L) = fOﬁOI te.

2.1 Pooled Estimators and Their Asymptotics

Define the pooled autoregressive estimator:

. . tr (ZI_1Z)
ppool - tr (Zlflzfl) .

Our choice of the pooled estimator rests on three reasons: First, it simplifies the joint
limit theory (as n,T — 00). Secondly, this allows us to analyze our tests under the local
alternative H;. Thirdly, it is clearly appropriate for the linear structure of the model and
is an implication of our null hypothesis.

If there is no common factor, i.e, 87 f0 = 0 for all i, ¢, then the error term y;; contains
only idiosyncratic shocks and is thus cross-sectionally independent. It is well known in
this case that it is possible to modify the pooled estimator p,,,, by fixing a second-order
bias due to the serial correlation in the time series of the panel Z and make the modified
pooled /nT— consistent and have a normal limit distribution (see, for example, Levin et
al, 2001, and Moon and Phillips, 2000).

As mentioned in the previous section, when the panel is generated by the common
factors ﬂ?/ f? satisfying Assumptions 6 and 7, the influence of the common factor f; and
cross-sectional correlation persist in all the individual units. In this case, the conventional
central limit theorem cannot be applied to the conventional modified pooled estimator.
Hence, this estimator is not y/nT— consistent and does not have a normal limit. The
limit of the pooled estimator p,,,,; is derived in the following lemma.

Lemma 1 Suppose that Assumptions 1 — 9 hold. Then, as (n,T — o0),
Ltr (By (1) By (1)) ) + 1w? = Ltr (3,5p) — 307
tr (fol By (r) By (r) dr) Yg+ %wg

)

T (ppool - 1) =

where By (r) is the Brownian motion in (4) .



There are two remarks regarding Lemma 1. First, one should notice that under both
the null hypothesis Hy and the (local) alternative hypothesis Hy, p,,,, is T— consistent
for unity and has the same weak limit. Secondly, notice that the limit distribution of
T (Ppoor — 1) is a function of By (r) and highly nonstandard, and its convergence rate is
determined only by the time dimension T'. Adding cross-sectional units does not improve
the convergence rate of the pooled OLS estimator p,,,. To have an intuition on this,
observe that under the null the nonstationary panel data z;; consists of two components,
Ey; = Zi:l e;s (integrated idiosyncratic shock) and F = 22:1 f? (integrated factors)
that is common to all the cross sections. Thus, the pooled estimator p,,,, has a limit that
depends on By (r) since the dependence on the factors is not averaged away.

In order to achieve \/nT— consistency and the conventional normal limit, we need to
eliminate the common factors from the panel. To have an intuition, we first consider a
simple case where the factor loading matrix 8° and the coefficients of the dynamics of the
idiosyncratic shock e are known. Notice that under the null hypothesis,

72°=7% + 8" +e. (6)

To eliminate the common factor in the panel, in this case, we multiply equation (6) by
the projection matrix QBOZ. Then, under the null hypothesis, we have

Z°Qz0 = Z°,Qp0 + eQpo. (7)
In view of (7), we define
Z_ Z") —nTA)
ﬁ+ool ( IQBO ) - . ’ (8)
P tr (Z—lQﬁUZ/_l)

where A7 = 13" | A, ;. The estimator f);fool is a modified pooled OLS estimator using

the de-factored panel data. The modification is required because of the serial correlation
in eQgo.

Define © = diag (61, ..., 0,) . Now to find the asymptotic distribution of i);ool, we write
by definition that

vnT <b;_ool - 1)
VI (i (2-1Q (2= 2.1)) = X)
wrrtr (Z-1QpZL,)
_ﬁftr( Z_1Qp0Z%)  /n(Zstr (2°,Qpoe’) — A7)
wretr (Z-1Qp ZL,) arrtr (Z-1QpZ.,) -

Lemma 2 provides the asymptotic analysis of each component in this expression.

Lemma 2 Suppose that Assumptions 1 — 9 hold. Assume that (n,T — oo) with # — 0.
Then, the following holds.
(a) st (Z-1Qpo 2" ) —p
(b) —=tr (Z_1Qp02Z% )H L ppw
(¢) Vi (5ptr (Z2,Qgoe’) = ) = ( be) -

1
2(.4.1
p

Using the results in Lemma 2, we can derive the asymptotic distribution of \/nT’ <ﬁ>;00l - 1)
as follows.

2Recently, Phillips and Sul (2002) independently propose a similar orthogonalization procedure.



Theorem 1 Suppose that Assumptions 1 — 9 hold. Assume that (n,T — oo) with % — 0.
Then,

vnT (p;ool_l) :>N< Ho> ¢:>

Theorem 1 shows that under both the null and the local alternative, ,b;‘ool is \/nT—
consistent and asymptotically normal. Also, it shows that the limit distribution of

VT <ﬁ>;rool - 1) is unbiased under the null while under the local alternative it has a

drift term that is the average of the deviations ;.3

This result is fully expected because the common factors in the panel are eliminated
and the de-factored data Z(@Qgo has no cross-sectional dependence. Also, the estimator
i);ool does not depend on the factors in f. Thus, if a test is constructed using ﬁ);rool, then
we may expect that the test statistic is robust with respect to the factors in f?.

Another way to eliminate the factors would be to project the panel data on the orthog-
onal space generated by the nonstationary factors F?. In this paper, we do not consider
this approach because handling nonstationary factors would be more complicated than
handling non-random factor loading vectors and the primary interest of this paper is to
eliminate the common factors 4 F? under the null, and not to estimate them.

In view of Theorem 1 and Lemma 2, we may deduce that

T (pfm—1
) ()
D 2
~+ 1 ! 2 wg
\/ET (ppool - 1) Wt ( IQQOZ ) (bi =N —He %7 1 (10)

as (n, T — oo) with & — 0. These statistic are not useful in applications, however, because

and

one does not observe the true factor loading coefficient ﬂ? and the long-run variances of
the idiosyncratic shock e;; in general. Feasible versions of these statistics will be developed
in the next section.

Notice by the Cauchy-Schwarz inequality that < 1, and =% ¢2 =1 only when w?; are
identical for all 7. So, the test statistic will have better power when the cross sectlons are
homogeneous, more specifically, when the long-run variance of their idiosyncractic shocks
e;+ are identical across i.

2.2 Feasible Panel Unit Root Test Statistics

In the previous section, we have defined test statistics in (9) and (10) that are not feasible
since they depend on unknown parameters. In this section, we obtain feasible versions of
these statistics that will have the same asymptotic behavior. We proceed by first discussing
the estimation of the factor loading coefficients and the long-run variances of e;; assuming
that the true number of the factors, K, is known. We show that the estimation of these
quantities does not affect the distribution of our statistics in large samples. Finally, we
discuss how to obtain a consistent estimator of K.

3The asymptotic normality in the theorem does not hold if we fix the alternative to a constant p that
is invariant over time and strictly less than one. In this case, the pooled OLS estimators p,,,; and its

modified version ﬁ;ool would be inconsistent due to the serial dependence in the idiosyncratic shock e;q.



Estimation of 3°

To estimate ﬁ?, we use the principal component method. This approach has been

used widely in the literature on factor models of panels with large n and large T, for
example Connor and Korajczyk (1986, 1988, 1993), Stock and Watson (1998), Bernanke
and Boivin (2002), Brisson, Campbell, and Galbraith (2001), Bai and Ng (2002), and Bai
(2001).

In model (1), since the error term y;; is not observable, we use the residual

y=2- ﬁpoolZ—l'
To estimate 3° and f°, we minimize

tr (518 (5~ £8)')
nT

Var (f7ﬂ7K) =

with respect to 18—7;@ = Ik or %é = Ix. With the normalization %’Q = Ik, we have the
estimated factor loading matrix 8 that is a (n x K) matrix of \/n times the eigenvectors
corresponding to the K largest eigenvalues of §'g. Then, we obtain an estimator of the
factor, fx = %gj@ - On the other hand, if we use the normalization %i = Ik, we have the
estimated factor fx that is a (T’ x K) matrix of v/T times the eigenvectors corresponding

to the K largest eigenvalues of ¢/, and the estimated factor loading 3 K= %g)' fx. Define

o~ 1/2
BK = BK (51{”51() )

(11)

a re-scaled estimator of the factor loading®. This is the estimator of % that we will use
in defining our feasible panel unit root test statistics.

The following lemma shows that the projection matrix @ By is consistent and provides
its convergence rate.

Lemma 3 Suppose that Assumptions 1 — 9 hold. Assume that (n,T — oo) with # — 0.
Then,

s, - @

=0 (max (L L))
» wVT))
Estimation of the long-run variances

In order to implement the t-statistics in (9) and (10), we also need consistent estima-

< ~4
tors, say )\:, @2 and ¢, for A\, w?, and ¢}, respectively, satisfying

va(Ai=an) = o), (12)
P-w? = 0,(1), (13)
and

e — 8t =0,(1). (14)

—1/2

— A
4The rescaled estimator studied in Bai (2001) is Bx (zKTf—K>



In this section we propose estimators of A, w?, and (bi that satisfy these conditions.

Let é;; denote the (¢, 7)™ element of é = §Q 3,. - Define the sample covariances L (j) =
% >, €itéiryj, where the summation ), is defined over 1 < t,t 4+ j < T. To define the
estimators of the long-run variances A\, w?, and ¢?, we use the following kernel estimators

of Aei and w2 ;,

R T—1 ] R

b = Tu(3)06) (15)
j=1
T—1 ]

~2 - J\Npo s

= Y w<h)m>, (16)
j=—T+1

where w (+) is a kernel function and h is a bandwidth parameter. Define
“n 1 n . e 1 n = o 1 n 4
/\e = E Z;/\e,h We = E Z;we,m and (be = E Z;we,i' (17)
1= 1= 1=

< ~4
In order for the estimators )\:, &2, and ¢, to satisfy the desirable properties in (12) —(14)
we need the following assumptions on the kernel function and the bandwidth parameter.

Assumption 10 (Restriction on the convergence rate of n and T'). The size of the panel
(n,T) tends to infinity with liminf &7 > 1,

(n,T—o0) logn

Define a = (HI]I} inf )11?—2%. The parameter a is related to the speed of % tending to zero.
n,T'—oo
The restriction a > 1 implies that (n,T — oo) with & — 0 because for n,T" large,

n _ _logT _logT _
2 elogn logT _ 6(1 logn)logn _ n(l 1ogn) < n(l a) _, 0.

T

The above assumption allows the parameter a to be infinity.

Assumption 11 (Kernel Conditions) The kernel function w (-) : R — [0, 1] is continuous
at zero and all but a finite number of other points, satisfying

[e e}

(i) w(0) =1, w(z)=w(-z), / w (z)® de < M,

—00

(i) wg = lim [1 —w (z) / [2]"] < o0

for some 0 < q < m, where parameter m is defined in Assumptions 2 and 3.
In some cases, we need to strengthen this assumption to:

Assumption 12 (Kernel Conditions™) The kernel function w (-) satisfies the kernel con-
ditions in Assumption 11 as well as

1
1 .
(iii) max{ ’_al} <q

10



The parameter ¢ is related to the smoothness of the kernel w (-) at zero. It is well
known that for the truncated kernel, w, = 0 for all ¢ < oo, for the Bartlett kernel, w, < oo
only if ¢ <1, and for the Parzen, Tukey-Hanning, and Quadratic-Spectral kernel, w, < co
only if ¢ < 2 (e.g., see Andrews, 1991). The requirement 0 < ¢ < m is related to the
smoothness of the spectral densities of e;; and f2.

Assumption 13 (Bandwidth Conditions) The bandwidths hy, h,,, and hg tend to infinity
satisfying the following conditions.

(a) hy ~ nb with 2—1q <b< min{%, %,%}.

(b) For 0 < q¢ <1, hy ~n® with 0 < b < min{1,%}. For ¢ > 1, hy, ~ n® with
o<b<min{1,%,g}.

(¢c) For0 < g <1, hg ~ n® with0<b<i. Forq > 1, hgy ~n® with 0 < b <

; 1l a
mm{4,q}

Lemma 4 Suppose that Assumptions 1 — 10 hold.
(a) If the kernel window satisfies Assumption 12 and the bandwidth hy satisfies As-
sumption 13(a), then,

Vi (A =) = 0,(1):

(b) If the kernel window satisfies Assumption 11 and the bandwidth h, satisfies As-
sumption 18(b), then

(¢c) If the kernel window satisfies Assumption 11 and the bandwidth hy satisfies As-
sumption 18(c), then

¢e7¢3:010(1)'

In view of (9) and (10), using (11) and (17), we may define the following feasible
t-statistics for Hy:

= \/ET (p;ool - 1)

a ’
~4
20
wZ

1 Ae
£ = VAT (Do — 1) \/ t (2-105,204) (%)

and

where
tr (Z,lQBK Z’) —nTA.

tr <Z_1QBKZL1)

A~k o
ppool -

11



Theorem 2 Suppose that Assumptions 1 — 13 hold. Then,
wh

t:7 tz = N —He —67 1].
( 20;

a) Theorem 2 indicates that the t-ratio statistics t¥ and ¢; have significant asymptotic
a b
power in \/%T— neighborhoods of the null of unit root. As expected, the power

Remarks

increases as iy deviates from zero.

(b) The finite-sample performance of univariate unit root tests suffer from the difficulty
of estimating long-run variances such as wEL Our panel tests should perform better
in this regard since what is required is the average wg,i. This averaging should remove
some of the uncertainty inherent in long-run variance estimation. Of course, this
averaging will not remove bias in the estimation of the long-run variances.

2.3 Estimation of the number of factors

As mentioned in the beginning of the previous section, all the results in that section are
established under the condition that the number of the factors, K, is known. When it is
unknown, a natural approach is treat the estimation problem as a model selection issue
and to estimate K using an information criterion. In this section, we discuss how to
obtain a consistent estimator of the number of factors, K, using this approach. Now for
a given (n X r) matrix S, let

tr (59— £:8,) (9 — £:8,) O
Wt (B,,7) = Hjl”iTn <( n)T( ) ) _tr (yngﬁry).

To estimate the true number of factors, K, Bai and Ng (2002) propose to maximize the
following criterion functions,

PC(r) = Wyr (@.J)—i—anT,
1C(r) = W (War (B,.7)) +rGur,

where the penalty function G,, ¢ satisfies (i) G, — 0 and (ii) min {n, T} G, 1+ — 0. as
(n, T — 0).

Theorem 3 Suppose that Assumptions 1 — 9 hold and (n,T — o) following Assumption
10. Let

K = argminPC (r), K = argminIC (r).
1<r<K 1<r<K

Then,
(a) pliml {K = K} =1 and (b) pliml {K = K} = 1.

The specific forms of the penalty function proposed by Bai and Ng (2002) are:

_ opn+T n+T
Gpcinr = 0, T In ( — ) ,
onn+T .
Gpoonr = 62" T In (min {n, T}),
Cre _ penit T (In(min{n,T})
St ¢ nT min {n, T} ’
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and

n+T n+T
Greanr = e In )
n+T .
Greonr = T In (min {n,T}),
G n+T (In(min{n,T})
1C,3nT nT min {n, T} '

We also consider the modified BIC criterion that they proposed which they called
BICg :

n—+1T
nT

BICy = Wy (ﬂ 7“) +rgn In (nT)

because their evidence suggests that it performs better in selecting the number of factors
when min (n, T') is small (< 20) as is often the case in empirical applications. Bai and Ng
rejected this criterion because it does not satisfy the required conditions for consistency
when either n or T' dominates the other one exponentially, but this appears to be a rather
unusual case. For small n and T of roughly the same magnitude, this criterion performed
best among those they considered.

3 A Model with Incidental Trends

In this section, we extend our analysis and consider the dynamic panel model that may
include incidental trends:

zZit = O‘;m’gk‘tJFZZQt (18)
2 = PN 1+ Y,

where

gor =1 and gi; = (1,1)".
We continue to assume the local-to-unity framework (2) for p, and the approximate factor
structure (3) for y;;. We also assume that 2, = 0 for all i. As in the previous section, we
want to test for the null hypothesis Hy against the (local) alternative Hj.

The model (18) is an extension of the model in the previous section as it adds incidental
trend components o, gx: representing individual effects. When k = 0, i.e., giy = 1, the
model with incidental trends (18) reduces to our original model (1). However, in this
section we do not assume any restriction on the incidental parameters (or trends) such as
Assumption 9. To distinguish the two different models of k = 0 and k = 1, we call them
model £ = 0 and model k = 1, respectively.

The main purpose of this section is to study the local power of t-ratio type statistics
based on a (bias-modified) pooled estimator ( such as p*) using detrended (or demeaned)
panel data. Detrending (or demeaning) is required to eliminate the incidental trends
(parameters) in the model and have a test statistic that is independent of the incidental
trends (or parameters).

To make our point, we will simplify our analysis as much as possible by making more
restrictive assumptions than in the previous section. In particular, we assume that e;; ~
iid (0, 1) with finite fourth moments across i and over ¢, f; ~iid (0,1) over ¢, and e;; and
ft are independent. We also assume for convenience that the factor loading coeflicient
vectors 3} are observed.

13



Finally, we replace our local-to-unity framework of (2) by assuming that the autore-
gressive roots are identical cross ¢ and assume that

pizl—nlf]—eTforalli.
In what follows, we will investigate the asymptotic powers of the models £ =0 and k =1
within a 1 — neighborhood of the null hypothesis of a unit root and find that the test
has no asymptotlc power if n > 1 for k =0 and n > 1 for £ = 1. The restrictions made
in this section could be relaxed to the more general condltlons assumed in the previous
section without changing any of the main results.
To distinguish the notation for the panel under the null hypothesis, we denote Z° (0)
for Z° in (1) when p, = 1 (or equivalently 6; = 0) for all i. Define F° = Zf° and E = Ze,
where E be a (T x T) lower triangular matrix such that

10 --- 0
~ 11 0
(TXT) : ’
1 1 1

So,
Z°(0) = F°p” + E.

Similarly we define Z°, (0), F°;, and E_; to denote the matrices of lagged panel data of
Z°(0), F°, and E, respectively. Define Gy = (gr1, ..., grr) > a T x (k + 1) trend matrix
(or a vector consisting of ones). Let Qg = It — Gir (G;CTGkT)_l G- When A is a
(T x n) matrix of panel data, we denote A = QgA, the matrix of panel data from which
the trends (or the means) along the time dimension have been subtracted. Using this
notation together with the notation defined in the previous section, we may deduce that

z=2°
and
Z° (I — p(L)) = '8 +e.
Analogous to [);O()l in (8), we may define
tr(2-1Qp02") = nTbeur,
tr (Z_lQL;oZ’_l)

ppool =

where the bias term is by, ,7 = nTE <tr (E_le >> The limit of the bias by, 7 as T — oo is

<f0 fo r) hy (r, s) dW (s )dr) 5, where W (r) is a Wiener process, hy (1,5) =

(fo g ( dr) gk (s), go(r) =1 and g1 (r) = (1,7)". The correction term

bk,nT is the mean of the bias generated by the correlation between the detrended data
F_; and é.

The typical t- ratio statistic is defined as

i \/tr (2-1Qu0 20, (P 1) (19)

5A direct calculation shows that by = f% for k =0 and 1.
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Then, we may write

~ ! 1
\/ﬁ ﬁtr {Zngﬂo (_ IL’?TZO ) } - bk’,nT

t#* = L
\/#tr (210w 2.,

Vi [t (Bad) = by N i [t (200 = 22, 0) Q)] |
\/n}m tr (Z,lQBoZ;) \/#tr (Z,IQBDZIl)
il (2 0,2, 0)

" \/#tr (2_1Q502L1>

\/E #tr <(201 . 291 (0)) QBO (291 - 291 (0))/)

—Hg

nn ~ ~
\/#tr (2-1Qp 221
, vt (2 - 200) @» 2, 0)
oy
n ~ ~
\/ﬁgtr (Z-1Qp22))

Lemma 5 provides the asymptotic analysis of each component in this expression.

Lemma 5 Assume that n > i for model k = 0 and n > % for model k = 1. Under the
assumptions made in this section, the following hold.

(a) <k=tr (ZngﬁoZ%) —p (fol rdr — fol fol min (7, 5) hy (1, 8) dsdr).
(b) /n {ﬁtr <E_1é’> by, ,LT} =N <O lim, r E <”T S Zt Ey1éy — by nT>2) '

(c) \/n [ﬁtr (( — Zo_l (0)) Qﬁoél) — La fO fo r—8)hy (r,8) dsdr} =0,(1).

(d) /2= {Wtr <291 (0) Qg 2%, (0)) — (fo rdr — fO fo min (r, s) hy (1, s) dsdr)} =
op(1).

(¢) st <(201 ~29,(0)) Qo (220 - 2% (0))') =0, (1).

(Dertr (200 = 201 (0) Q204 (0)) = 0, (1),

Note that according to Remark (c¢) on page 950 of Moon and Phillips (2000), we have

1 1o 1 pr
/ rdr — / / min (r, s) hy, (r, s) dsdr = / / (r —s) hg (r,s)dsdr for k=0, 1.
0 0o Jo 0o Jo
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Then, we may deduce that for n > % in model k =0 and n > % in model k =1,

VA [t (1) — b

t* = + 0, (1)
\/#tr (210w 2.,
s 2
lim, 7 & (ﬁ S Zthl Ey 165 — bk,nT)
fol rdr — fol fol min (7, s) hy (1, s) dsdr

= N|o,

from which we find that the limit distribution does not depend on p, and is identical
under Hy and H;. Therefore, the t#, the t-ratio statistic based on f’ﬁ)oz does not have any
asymptotic power in n%T — neighborhoods of the null of a unit root, where n > i in model

k=0andn > % in model k£ = 1. Summarizing this, we have the following theorem.

Theorem 4 Assume that n > i for model k =0 and n > % for model k = 1. Under the
assumptions made in this section, the t¥# statistic does not have any asymptotic power in
— neighborhoods of the null of unit root.

1
nnT
Remarks

(a) Again, as mentioned earlier, the same result as Theorem 4 could be obtained under
more general conditions than those assumed in the previous section at the cost of
complexity. However, due to space limitations, we omit this.

(b) Recently, with a simple nonstationary dynamic panel model with iid idiosyncratic
shocks only, several papers have studied asymptotic local power properties of vari-
ous panel unit root tests. Ploberger and Phillips (2002) (PP) investigated optimal
invariant panel unit root tests that maximizes average power. Moon and Phillips
(2002) proposed a similar panel unit root test using OLS detrended data. Most
recently Moon, Perron, and Phillips (2003) (MPP) proposed a point optimal invari-
ant panel unit root test. One of their main findings is that when the panel includes
incidental trends (in our case, it corresponds to model k& = 1), their tests have power
within ﬁ neighborhoods of the null of unit root. In view of Theorem 4, their
tests asymptotically dominates the test based on t# since the latter does not have
any power in such a shrinking neighborhood. Therefore, in practice, we do not
recommend to use the ¢t test in the presence of the incidental trends.

(¢) The finding in Theorem 4 contrasts to the case considered in the previous section.
Without the incidental trends, we verified that the two t— ratio type tests, ¢} and
t; have powers ﬁ neighborhoods of the null of unit root.

(d) The power difference between the t# test in (19) and the optimal tests in PP and
MPP is not due to the existence of the common factor in model (18). If there exist
common factors in the nonstationary panel such as (18), by applying the procedure in
the previous section it might be possible to eliminate them and construct the optimal
tests, using the “de-factored” data, that have power within —%— neighborhoods of

nl/4T
the null of unit root.

4 Simulation experiment

In this section, we will conduct a small Monte Carlo experiment to assess the finite-sample
properties of the tests presented on section 2. We also want to demonstrate the lack of
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power of the tests when deterministic components are estimated. For this purpose, the
data generating process we will use is:

0
Zig = Qiptapt+ oz
0o _ 0
Zig = PiZig—1 t Yit
0o _
zog = 0

with a factor structure for the error terms:
K
Yit = TZﬁijftj + VKeit.
j—1

The DGP for y;; is identical to the one used by Bai and Ng (2002) for 7 = 1. We add
to that an autoregressive structure as well as deterministic components.

For the first two experiments, we have a single factor (K = 1) and all shocks are
assumed i.i.d. standard normal:

(ftj;ﬁijaeit) ~ #dN (0, I3),
but they will differ according to the specifications of the deterministic components.:

Experiment 1 (fixed effects, no trend) : ;0 ~N(0,1),a;1 =0
Experiment 2 (deterministic trend) : ;0 ~ N (0,1),0;1 ~ N (0,1)

The third experiment looks at the case of cointegrated factors. In this case, the number
of factors is K = 2, and they are generated according to:

ftl _ Ut,1
fio U1+ Aug o

with the shocks u;; i.i.d. standard normal. We use the fixed effects, no trend specifi-
cation of experiment 1 for this experiment so that the results of section 2 hold here.

For each of these three data-generating processes, we consider two assumptions on the
autoregressive parameters:

Case A : p;=1 Vi
Case B : p; ~U]J0.98,1]

Case A is used to study the size of the proposed tests. Case B is used to study the
power of the tests. Two distinctive features of this case are worth emphasizing. First,
we do not impose a common autoregressive parameter under the alternative. As we have
shown in section 2, our test is consistent against this type of alternative despite our
pooling approach. Of course, tests that do allow for different autoregressive parameters
under the alternative hypothesis may prove to be more powerful. Secondly, we consider
a fixed alternative regardless of the size of n and T to show the increased power as n
and/or T increase. Thus in terms of the theoretical framework of section 2, the random
variable representing the local alternative, 8;, has a uniform distribution over the interval

[0, %} . The chosen specification ensures that the average value of p is 0.99.

Finally, we consider three values of the parameter controlling the relative importance
of common versus idiosyncratic shocks 7 : 0, 1, and 3. A larger value of 7 represents a
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greater importance of the common shocks relative to the idiosyncratic ones. The base
case T = 1 represents a situation in which the two components have equal importance,
and the case 7 = 0 corresponds to the absence of common factors (i.e. an independent
panel).

For the estimation of the number of factors we use the IC and BICj3 criteria and
follow Bai and Ng and set the maximum number of factors K = 8. Since the three IC
criteria gave essentially identical results, we only report the results using the IC criterion
here. The long-run variances are estimated using the Andrews-Monahan (1992) estimator
using the quadratic spectral kernel and prewhitening. All tests are carried out at the 5%
significance level, and the number of replications is set at 1000.

We choose two values for each of n and T : n = 10 or 20 and 7" = 100 or 300. The
larger value of the time dimension T corresponds to panels of about 25 years of monthly
data, approximately the length of post Bretton Woods exchange rate data often used for
testing of the purchasing power parity (PPP) theory. The smaller value of T' is meant to
represent similar panels of quarterly data.

Table 1 presents the results for the size of the tests in experiment 1. Except for the
last two columns, each entry in the table represents the percentage of replications in which
the null hypothesis of a unit root is rejected using the appropriate test statistic. The first
column provides results for our ¢ test with the number of factors either set to the true
number (1), estimated using the information criteria suggested by Bai and Ng (2002) and
BICs, or set to 0 (i.e. neglecting to defactor the data). The following column gives the
same information for the ¢; test. The last two columns give the mean estimated number
of factors using either the ICy or BICj criteria.

In almost all cases, the test based on the ¢} statistic has better size properties. As
pointed out by Bai and Ng (2002) , with at least 20 cross-sections, the number of factors is
estimated with extreme precision. This means that for the small number of cross-sections
(n = 10), the number of factors is grossly overestimated by their information criteria, and
this distorts the size of our tests. The use of the BICj5 criterion alleviates this problem
to some degree. In fact, with such a small number of cross-sectional units, it is often
preferable to use tests that assume cross-sectional independence rather than estimate the
factor structure.

The value of the parameter T controls the relative importance of common versus id-
iosyncratic shocks. Looking down the table, it appears that the more important are the
common shocks (larger value of 7), the more difficult it is to control size with the small
value of n. This results stems from the imprecise estimation of the factors allowed by
the small number of cross sections. The last part of table 1 shows the price to pay for
handling cross-sectional dependence when it is not present (the case where 7 = 0). The
size distortions in that case are quite mild for the ¢; test.

Table 2 presents power results for the first experiment. Remember that the autore-
gressive parameter varies with ¢ but has a mean value of 0.99. Each cell in the table has
two entries, the first one is raw power and the second one is size-adjusted power. Our tests
have very good power for this very difficult alternative hypothesis. As expected, power
goes down as the importance of the factor (characterized by the parameter 7) increases.

Table 3 reports the size results for experiment 2 (with a deterministic trend). The
same results as without trend are observed. With a small number of cross-sections, we
overestimate the number of factors and obtain large size distortions as a result. Once that
number is well estimated (with 20 cross-sections), our tests have good size properties,
especially when T" = 300. The size properties also do not seem to be much affected by the
value of 7 in this case.

Table 4 reports the power of our test with deterministic trends. As expected, power
is almost absent. Our theoretical result that the distribution of the statistics is the same
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under the null and local alternative hypotheses implies that size-adjusted power should
be approximately equal to size or 5%. Our results are quite suggestive of that.

Table 5 presents the size results for the case with cointegrated factors. The size
properties are similar to those of experiment 1 so that the presence of multiple cointegrated
factors does not adversely affect the size of the test. There are noticeable larger size
distortions for 7' = 100, but for T" = 300, the size properties are virtually identical to the
single factor case. Despite cointegration, the IC' and BICj3 criteria pick the right number
of factors (2) when n = 20. Power is also very close to the single factor case.

In summary, our tests require at least 20 cross-sectional units for precise estimation
of the number of factors. Once this is accomplished, our tests show good size properties
and are quite powerful when no deterministic component is estimated. This is true with
a single factor and with two cointegrated factors. As we have shown theoretically, the ¢—
ratio type tests have weak power (beyond size) under local alternative hypotheses when
deterministic components have to be estimated.

Tests with a small number of cross-sections suffer from severe size distortions due to
the overestimation of the number of factors. In such cases, it may be possible that tests
designed for a small number of cross-sections such as VAR or SUR tests that leave the
covariance matrix unspecified may perform better (see, for example, Chang, (2003) and
Taylor and Sarno (1998)).°

5 Conclusion

This paper has developed new procedures for testing the null hypothesis of a unit root in
cross-sectionally correlated panels of large dimensions. This is quite important since recent
use of panels involving long time series of a large number of countries, regions or industries
has been rapidly increasing. Assuming independence among cross-sectional units in such
cases seems very restrictive as there should be common shocks such as business cycle
effects. The approach used here is to model the dependence among cross-sectional units
through an approximate factor model. Conditional upon these factors, the cross-sectional
units are assumed to be independent, though their idiosyncratic shocks could be serially
correlated.

We have shown that with individual fixed effects, we can construct tests based on
a bias-modified pooled estimate of the autoregressive parameter that have power in a
local neighborhood that shrinks towards the null hypothesis at rate ﬁ The limiting
distribution of our test statistics is normal and therefore no special table is required to
compute p-values.

Secondly, we have shown that corresponding tests in cases where heterogeneous deter-
ministic components have to be estimated has no power in such neighborhoods. We have
given upper bounds on the rate at which local alternative must approach the unit root
null hypothesis in order for nontrivial asymptotic power to exist in such cases. This rate
is slower than the ﬁ neighborhood obtained when no deterministic components have

to be estimated and is ﬁ with deterministic linear trends.

Finally, we have provided simulation evidence that supports our theoretical results.
In particular, we have shown that we can have tests with good size and excellent power
when no estimation of deterministic components is necessary. When such estimation is
necessary, the tests typically have no power beyond their size.

6 A drawback of these models is that they tend to have a large number of parameters while our factor
model is designed to keep the number of parameters small.
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6 Appendix A: Preliminary Results

Suppose that A and B are (n x n) matrices. The following facts will be used frequently
in the following proofs; (a) tr (AB) < ||A]l||B]| by the Cauchy-Schwarz inequality, (b)
if A is symmetric and positive semidefinite, then [|A| < tr(A) and tr(A) < /n|/4],
and (c) if both of A and B are positive semidefinite, then tr (AB) < ¢r (A4)||B||, and
tr (AB) < tr(B) ||A]| . To distinguish the notation for the panel with p, = 1(¢; = 0) for all
i, we denote Z (0) and Z° (0) for Z and Z° in (5), respectively. Also we define F¥ = = f°
and E = Ze, where E be a (T x T) lower triangular matrix such that

1 0 --- 0
_ 11 0
(TXT) : ’
11 1
So,
Z(0) = lra' +2°(0),
Z°0) = F°8”+E,

where I7 = (1,...,1)". Similarly we define Z_;,Z_, (0),2°, (0), F°;, and E_; to denote
N——
T
the matrices of lagged panel data of Z, Z (0), Z° (0), F°, and E, respectively. We denote
p =diag (py,...,p,) . We use M to denote a generic positive constant.
The following lemmas are useful in proving the main results of the paper.

Lemma 6 Let X;;r = % Zthl (eiteji — E (eiejr)) - Under Assumption 2, sup; ;E (X} 1) <
M.

Lemma 7 Under Assumptions 1 — 9, the following hold. Let E;; = 22:1 eis with By =
0.

(a)AS(”T_’OO)wL:ﬂ i=1 2t= 19Et 1 7p 2M9w
(b) As (n, T — 00) with % — 0, v/ii (7 S0y Y0y Bumrew = AL) = N (0,467) .

Lemma 8 We assume Assumptions 1 — 9. Then, Parts (h) holds as (n,T — o) with

# — 0, and the other parts hold as (n T — o0), where

(a) o= |1 24| = 0, (1), (b) 35|22 1y+y Za||=0,(1),

(c) str (BYE E_18°) = 0, (1), (d) = ||3”¢'E_, ﬂ°+ﬂ0’E’ e8| =0,(),
(¢) ‘el = O, (max (ﬁ,%)) (1) Sitr (7%ee'°) = 0, (1),

(g9) ﬁtr (gole’ego) =0, (1), (h) n\/_T\/_ (ﬁﬂle eEr) = o0, (1), where Er = €'l

(i) ﬁﬁ |8”€lr|| = 0, (1). (i) J—J— ||elT|| Op (1), () ﬁlﬁ [y'lr]| = Op (1).

(]) \/ﬁ%ﬁ”ﬂO/El—llTH :O ) (k) nl (1)7
(1) = [0/ ELylr| = O, (1).

Lemma 9 Suppose that Assumptions 1 — 9 hold. Then, the following hold.
(a) 7= X0y 07 1, (X4 557 1ﬂ°’f°) =0, (1).
(b) = S 6 Y, (Y ) =0,(1).
(¢) 3 i 0.8 (S, SIS AY) 3 = 0, (1)
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(@) 3 i, 087 (S0, Y0 e 1foen) =0, (1).
(¢) 2 iy (zt 2 YT Stenei) = 0p (1),
(1) || 77 i iy A28 s e (0 SEA0) BY | = 00 (1)
(0) | S S 80800, S e (S0 S5) 47| = 0, 1),
(h) #T szlzl Hiﬁ?ﬁ,?' <Zs:1 (1 - T fz?) H = p 1)~
(i) o [0 800, (20 (L= 3) )| = 00 (1)
Lemma 10 Suppose that Assumptions 1 — 9 hold. Then, the following hold.

(a) 7 7121 = 21 (0)] = Op (1)
(0) Fgtr (Z-1 = Z-1(0)y') = 0y (1).
)

(c) \/—Ttr ((Z 1—2-1(0 )QBO ) = Op (1).
(@) = 8" (71 - ZT )],
where Zp = (217, .., Znr) and Zp (0) = (217 (0) , ..., 2o (0))'.

Let 3, denote an (n x r) matrix, » < K. Define

i (5,) = ( - (Z2) Z2). #ar ) =

(B (B8 B,
HgnT (ﬂ7) =tr <ﬁ <n—T> ﬁ) .

The following lemma establishes the uniform convergence of the three functions.

<=
/\
3|

’ﬂ|€
~_
s
~—

and

n

Lemma 11 Suppose that Assumptions 1 — 9 hold. As (n,T — oo) with % — 0,
(a) sup s, [Hanr (8;) = Hont (8,)] = 0p (1)
(b) supg,ﬁ_r _; |Hont (B) = Hanr (8,)] = 0, (1)

_ The relationship among the various estimators for 3% and fO are well known. Let
Ay i denote the diagonal matrix of the K largest eigenvalues of §g’. Then, by def-

inition, yy’ﬂ\/L— = ﬂ\/L—AnT Kk, and so g)’y( ’%AHT/K> = (”%An%/K> AnT,K. Since

tr (An%/zz{ e gy /.\/LTAHT/K) = Ik, we have B = ﬁy fKA;T{K, and in consequence,

1/2 5
fr = ;yﬁK = fx :LTI,K) . Also, using the definition of 3, = % 'fi and the rela-

tions above, we deduce that
o (BB 1 (A Ll ¥y
51{ =0k ( fK T = TZJ K = nTﬁK'

This relation between 3 x and By will be used a lot in the proofs of the appendix.
Recall that 8y is \/n times the (n x K) matrix of the orthonormal eigenvectors of the

first K largest eigenvalues of %l% Let A,7 k be the (K x K) diagonal matrix consisting
of the first K largest eigenvalues of % (and also of §'9), i.e., %B k= BrAnr K. Define
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Ak to the (K x K) diagonal matrix consisting of the eigenvalues of ;¥ 3. The following
lemma shows that the limit of A, k is Ax. This lemma corresponds to Lemma A.3 of Bai
(2001), which was also implicitly proved by Stock and Watson (1998). The main difference
between the two lemmas is that Bai analyzes the relationship between two estimators of
the factors f using the observable data, while the following lemma characterizes the
relationship between two estimators of the factor loadings ﬁ? using the residuals.

Lemma 12 As (n,T — oo) with & — 0, under Assumptions 1 — 9, the following hold.

P
(a) %51{‘37%51{ = Anr ik —p Ak

3 0 07 0 0773
) (%55 (55) (550) = A
Lemma 13 Suppose that Assumptions 1 — 9 hold. Assume that (n,T — oo) with % — 0.
Then, the limit of
FU1ON (8 Bk
He = (2L ) [ 2K
K ( T n

s of full rank, and Hg is asymptotically bounded.

Lemma 14 Suppose that Assumptions 1 — 9 hold.
(a) Suppose that (n,T — o0). Then,

~0, (max (

where B3 = B°Hy, Hx = (Lo;lﬁ) (ﬁo—fﬁ-) )

B — B

n

:|H
H|H
N———
N———

(b) Suppose that (n,T — oo) with & — 0. Then,

(c) Suppose that (n,T — oo) with & — 0. Then, ’

N . /
(d) Suppose that (n,T — oo) with % — 0. Then, (ﬁﬁ\;——fﬁ> x| =op(1)

Proofs of Lemmas 6, 7, 8, and 9

We omit these proofs in this paper. The required results for Lemmas 6, 8, and 9 are
obtained by calculating the irrelevant moments directly. The proof of Lemma 7 is similar
to the proof of Theorem 14. All the detailed proofs can be found in Moon and Perron
(2003).

Proof of Lemma 10
Part (a). The required result follows by Lemma 9(a) and (b) because

1 1 n T

T2 1221 — Z_1(0)] = T2 ZZ (2i—1 = Zip—1 (0))2
i=1 t=1

n T [t-1 2 n T /t-1 2
1 e 1 t—s—1
- S (S ey (S )
=1 t=2 s= =1 t=2 \s=1
2

IA
3 e
[\]
\E
ST
M’ﬂ
— "
M1
=
)ﬂ V)
=
oY
» S
N———— 2
+
9
\E
B,
MH
Z 2
L
o~
ol e
!
=
)
N————
DN
]



Part (b). By Lemma 9(c), (d), and (e),

tr((Z-1—2Z-1(0)Yy)

1
\/ﬁT

" R (A t—s—1
- ZZ Zit—1 — 1t 1 0)) Yit ~ n_T Zezz (Z ( T > y15> Yit — O (1)
i=1 t=2 i=1 t=2 \s=1

as required. W

Part (c). Write

\/%Ttr (22 = 22, (0)) Qpoe’)
- \/%Ttr ((Zgl - 7% (O)) el) \/%T ((ZO ( )) 3’ (ﬂmﬁo) fead I) I.—1I., say.

By definition,

1 T 0 0 1 — (o (t=s—1
o= o Z(z“1—zit1<o>)eit~n—TZ"iZ<Z( T )y>

i=1 t=2 i=1 =2 \s=1
n T t—1 n T t—1
1 or t—s—1 1 t—s—1
= TL_TZQZﬂL Z(Z( T )fs) eit+_T 9LZ<Z< T >€'L.s> eLt_Op(l)a
=1 t=2 \s=1 i=1 t=2 \s=1
where the last equality holds by Lemma 9(d) and (e). So we have
I.=0,(1).
Also,
L 0 (307 30y ~1 50
I, = Wtr (220 =22, (0)) 8° (878°) " 5”e')

T ((ﬂ n O) 2y 2, 0)

0/ 20
<5nﬁ > HﬁOI /(ZO 91 (0)) 60H

s a0y —1
Since ‘ (LO'B—O> H = O, (1), the required result follows if we show that n\/lﬁT 8% (22, — 2%, (0)) B°|| =

n

IN

n\/_T

op (1), which follows because

187¢ (22, = 22, (0) )|

ZﬂOZZen O =21 (0) Y] ~

=1t=2

n\/_T

t—1
25029 Ze”< t—s—l)yjs>ﬁ?’

s=1

" ) =op (1)

nQT2

n\/_T

[, 3 800, e (S 5 1 1)
n2T2 + HZ =1 50 ijl 52’@ 23;2 et (Zi;ll (t—s—1) ejs)

by Lemma 9(f) and (g). W
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Part (d). The required result follows because

=18z = zr )]

= % Zﬂ? (Z?T_Z?T H Zﬂo (Zl T ° 1 yis>H
1 | & o, [ s—1
~ m Zﬁiaz‘(Z(l T >yis>‘
< — ZMW(Z )1 )
.

by Lemma 9(g) and (

Proof of Lemma 11
Part (a).
By definition,

y=272- Z)poolZ—l =y+ Ira/ (1 - ppool) + Zo—l (p - ppoolj’n) :

Then, we may write

ﬁfﬁ ZRIW

where

e . 2 aa B . Y'lrd + oy
Ri = T (1~ Phoot) T2 R2 = T (1~ Ppoot) (T

(p—1,)Z%y+y'Z°% (p—1I,) ) 7%y +y' 7%,
R3 = T s Ra=T (1= Dpoot) — 7
5 alpZ24 (p—In) + (p = ) Z%lra’
R5 = T (1 - ppool) < nT?2
R = T2 (1 — b )2 Zg’llTO/ + Oélszgl Ry = (P - ppool‘[’ﬂ) Z911Z91 (P - ppool'[’ﬂ)
'pool nT3 ’ nT '

By the triangle inequality,

sup |H1nT (ﬁr) - HZnT | < Z sup

Bebr_p k= 1_& I,

n

()] <

Notice that T (1 = ppp0) = Op (1) by Lemma 1, ﬂ%“i = O, (1) by Assumption 9, and
Tlp—1I| =4/ X0, 07 = O, (1). Using the results in Lemmas 8 and 9, we can show
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that

Rl = 0 25 =0, ().

Rall < 2o |7 (1= o) R — 0, (22,

m < ALZRIL o (L),

Rl = 17 (- )| R 2R 0, (1),

IRsl| < ﬁw(lﬁw)}%%uzmn O( )

Rall < om0 | ML o, (L )

Rl < 2 %%W(lw)z 122, -0,(7). (20)
,1@

where

L o (5 = Fane 6, |<TZ|\RK|\ <\/_max{\/_ \}_}) 0, (1),

) holds by similar arguments in the proof of Lemma 8(a). Then,

and this completes the proof of Part (a). B

Part (b).
Write
sup [Hant (8,) — Hant (8,.)]
B, (B°fY ef°B” e\ B,
= E— <
ﬁ:il tr(\/ﬁ T + T +nT \/ﬁ <IT+II+1I1I,
where
/ 0 0r / 0 07
52)%)| - g (55 %)
I = su tr [ —= Z ||, II= su tr| —= | —— | —&
ﬁ’ﬁrib <\/ﬁ( nT ) /n ﬂ_éﬂ_rpl v\ nT ) n
=(57) %)
111 = su tr — A
ﬁ’rﬁ_rlilr (x/ﬁ nT ) \/n
First,
0 r0r 0 £0r 07 1
I< sup ﬁf ’6}“6 Lﬁ fVe o<—)
_ﬁ;ﬁ:[ nT nT P \/T
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since H\ﬁ/—:—l =0(1) f— =tr (%) = O, (1) by Lemma 8(f).
Thus,

I=o0,(1).
Similarly, we can show that

-o, (%) — 0, (1).

Consider the last term, I11. Let 3, = (ﬂl,r, ceees Bis ...,ﬂ,m.)l. Notice that

n n n n T
I = o o ZZZ%%@ | < sup n222< > (eweje - enea't))) BB
—_—Tr_J, i=1 j=1t=1 TI i=1 j=1 t=1
P, zZﬂmﬂw (T > EB( )‘ — II1, + I11;, say.

Notice by Lemma 7(a) that sup; & >;_, E (¢%) < M. Then, since

T%i - M(TZE )

=1

sup

ﬁlzﬁr
n

T 1<, rM
o Z V) D BB <
g | =1

we have
11, = 0 (l) —o(1).
n

Next, we consider 111,. Recalling the definition of X;; 7 = % Zle (eirejr — E (eirejt))

we write
1 n n X n n
I, = swp |3 % ”Tﬁ“ﬂﬂ <sup| HZZZWMN
Bebr_y =1 Ljr:r i=1j=1
1 & X, Xij,
< o (3500) sl < (p )

Notice by Lemma 6, sup; Eij)T < M. So, for any € > 0,

4
XijT
B (e | ) T S B () _ i supiy Xy

XijT ,
Zers gt = gt = T2 gt -0

VT

P {Sup

4.7

s (n,T — o0o) with 2 — 0. Thus, sup, ; ‘M

: VT
as (n,T — oo) with % — 0,

111, =0, (ﬂ) —0,(1).
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In view of 111, and I1I,, we have

1 n
IIT =0, (max (E’ T)) =0, (1), (21)
as required for Part (b). W

Proof of Lemma 12
Let 8, be y/n times the orthonormal eigenvectors corresponding to the first r (< K)

largest eigenvalues of }n%g Similarly, let BT be /n times the orthonormal eigenvectors of
i 80 Fo 060’ - ~ c .

the first r (< K) largest eigenvalues of —%TL Then, G, and §, maximize Hi,r (5,)

and H3,7 (3,.), respectively, among the (3,.s satisfying ﬁ%ﬁﬂ = I,.. Define

/ N -
AnT,r = ﬁT <ﬁ> ﬁr

Vi \nT ) n
< B (808" B,

~ =k

Aotk — AKH —p 0. Let B; = (LOTI:LO) (%) and B}* = ”—gfﬂ

n

We first show that ’

Then, AnT’K = B?/ (#) (ﬁonﬁo> B;* Notice that A,LT,K is the (K x K) diagonal

matrix consisting of the first K eigenvalues of w%-TLOLO, and it is also the (K x K)
. . .. . ) 07 £0 0’ 20
diagonal matrix consisting of the eigenvalues of the (K x K) matrix ('LTL> (M) .

n

Now since <%ﬁ) (Lonﬁ—o> —p 252, a full rank matrix, by Assumptions 7 and 6, we
have

as (n,T — oo) (for further details on this, refer to Anderson, 1963).
Next, we establish that [|A,7 x — ]\"T’KH —p 0. By Lemma 11, as (n,T — oo) with

% — 0, SUPQ&:IT [Hint (8,) = Hant (8,)] = 0, (1) and Sng;Jﬂ_r:IT [Hant (8,) — Hant (B,)] =
op (1) for 1 <r < K. Then, by the triangle inequality, it follows that

sup  [Hinz (6,) = Hanr (8,)] = 0p (1) (24)

8.8
e

At — AKH —,0 (23)

for 1 < r < K. Since (3, and (3, are maximizers of Hi,7 (3,) and Hsnr (3,) , respectively,
it follows that

)HlnT (8,) = Hanr <Br)

for 1 <r < K. Also, by (24) and (25), we have

=0, (1) (25)

‘H3nT (Br) — Hsnr (6,)

< [Huur (B,) ~ ot (B,)] + Haur (B.) — Haur (3,)

for1<r<K.
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>From (25), it follows that

tr (Apry) —tr (AnT’T)

(2 (22) B\ (B (855087 B,
Vi \nT ) /n e nT Vin

e (B,) = Haur (B,)| = 0, (27)

for 1 <r < K. Since the sequences {A,7,,}, and {AnT’T} are nested, (27) implies that

|

Then, Part (a) follows by the triangle inequality and (23) and (28), so

AnT,K - ]\’ILT,KH —p 0. (28)

|Awr = Axcll < |

AnT,K - AnT,KH + ‘

AnT,K - AKH —p 0.
Similarly, Part (b) follows by (26) and (23). W

Proof of Lemma 13

>From Lemma 12(b), as (n,T — oo) with % — 0, we have

7l 20 0/ £0 0/ 73
(BE) () (52) o

where Ag a (K x K) full rank matrix. Since # —p L¢, a full rank matrix, ﬁlfl— is

asymptotically of full rank. Then, we have that Hx = (LOZIFLO) (%) is asymptotically

of full rank.
Also, from (29),

PN BN (BB (280 (B
() (5)] = () () () ) = enen
Therefore,

Hy - (%)/ (f(}fo)l/z (225 = 0,0, =0, ).

n

as required. W

Proof of Lemma 14.
Parts (a) and (b).
By the definitions of 3, and 3,

Al A

» Y'Y
_ 79 30
where
Q = Z- bpoolZ*1
fOﬂO/ +e— Zgl (ﬁpooll’ﬂ - p) + lTO/ (1 - ppool) . (31)
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>From (30) and (31) and by applying the triangle inequality, we may have

Q. 0 £0r 13 1 £0 207 7
] < R0 -l
2 || 8° B
SRS EIE-El
1 1
= T 0, (1) 0, ( <max{ }) » (1) + O, (\/Tmax{ﬁ,—T}) O, (1)
)
where the last equality holds by Lemma 8(e and the results in (20) together with
H \/EH = VK (by the definition of 3) and H H = ) (by Assumption 6). From this
we deduce both Parts (a) and (b). B
Part (c).
Similar to (32), we may write
Y BK — Bk
- B_K B F e 5 e’fOﬁOIBK KeeﬁK n B_K i\/ﬁHR ” B
vnnT v/nnT /nnT NG = MOl

>From (33) and H%H =0, (1), we have

B, (%) < %opa)oa)op(ln ﬁ@%iiK V70, (\/_max{in,%})
Thus, as (n,T — oo) with 7 — 0, we have
o (B =B \|| _ || BxeeBx
Bk (T) H = |~ maT +op(1). (34)
Since BK = nTﬁK = ﬁKA,LT K, we have
e _ BrceeBichy < eﬂKH - H eﬁKH 0, (1)
vanT || vnnT VT T DEN T anT ’

where the last equality holds by Lemma 12. Notice that

e (Bic = 53|+ 2Nesil?

|| 1 Hil

.2
eﬂKH

(354

IN

29



So,

B L 2 2 Heﬁ”H
T < + L
1 1
= 520, 00,1)+ 7=0,1)0, (1), (35)

where the last equality holds since sup,; E(e?) < M, by Lemma 14(b), Lemma 8(g), and
Lemma 13. So we have

~/ —
Bre'eBk

Thus, in view of (34) and (36), we have the required result, HB/K (%ﬁ) H =0, (1), as
(n,T — oo) with & — 0. B

Part (d).
Similarly to the proof of Part (c), the required result follows if we show that
Brees
‘ nnTK =o0,(1). (37)
Notice that
Biee eﬁK ﬁKe B ‘
<
‘ vnnT - vnnT ‘A”T K H
< e’ ' AL H I H BYee (BK - ﬂ?{> ' AL H
> \/’I_Z’IIT nT, K K \/’I_Z’IIT nT, K
1 eﬂo B° _
< Tn I H H HAILTKH + | Hx || H% A?L%,KH

= 220, (10,10, () +0,)0 )0, (max{ 2= 7=1) 0,10, 1) = o, 3

where the last line holds by Lemma 13, Lemma 8(g), Lemma 8(e), Lemma 14(b), and
Lemma 12. Therefore, we have the required result. B

7 Appendix B: Proofs of the Main Results

Proof of Lemma 1.
The proof is omitted. The proof can be found in Moon and Perron (2003). B

Proof of Lemma 2.
Part (a).
Part (a) is a special case of Part (b) with © = I, (ip = 1) and we omit the proof. B

Part (b).
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By definition,

tr (Z2-1Qp02%) = %tr(lTa/Qﬁo@Zg’l)+%tr(Z91Qﬁo®Zg’l)
L L] Jlodl 19224
VT VT V. /aT

1
= ?tr( 0,Q3002%) +0,(1).

1
nT?

1
= ot (22,:Qp002%) +

Also, by Lemma 8(a) and Lemma 9(a)7, we have

— 17 (22,Qu07%) — 1r (22, (0) QO 72, (0))]
= i (20 = 220 0)) Q22 (0 + 22,000 (22, - 2, (0)) )

N N A E T N ECNW(ERCTE EX)
< el (e (I (5) 19 =

- o (L)

So

1 1
Wt?" (Z_lQﬁo@Zg/l) mt?" ( 91 (0) Qﬁo@Zgl (0)/) + Op (1) .

Since Z°, (0) = F°, 8% + E_4,

1 1 1
W”( 1(0)Qp02%,(0)) = —tr (BE_1Q0p8°F" ) + 5 tr (E-1Q®FE" )
= Iy + 11, say.

First,

tr (E—lﬁo (50150)71 501@5017/_1) = Ipq + Ipp, say.

1
I, = E_108°F ) — —

1
_nT2 tr(
Notice that
Iba \/—\/—Z TQZFt 1E1t 1-

Then, it is possible to show that E (I%,) = O (), which yields Iy, = O, ( ) Also,

L [§EaseRvea

(ﬂ01ﬁ0>—1

Ibb S ‘ ﬂO/ﬂO ﬁO/eﬂOFl 1E ﬂo)

1
— %0(1)011 (1)Op (1) =0p (ﬁ) ’

"Notice that Z_1 — Z_1 (0) = 2°, — 2%, (0).

n /nT?

=
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where J’\l/——T;ﬁ = O, (1) holds by similar arguments used in I,. Combining I, and

Ibb7 we have

o)

Next,

II, = —tr (E_10E" ) —

1 1 0/ g0 1
TLT2 TL2T2 tr ((%) ﬂO/@EilEflﬁo = IIba — IIbb, say.

Using similar arguments in the proof of Lemma 8(c)®, we have

0/ 20
|Hb|<—’|<ﬁ ﬂ)
n

For ITp,, by Lemma 7(a),

Pom| [, (1
NG RACT A

n T
1 1
Iy = —5tr (E.1OF., E > 0BGy —p e
i=1 t=1

Combining 11, and I, we have
1 2
1l —, SHoWe-
From I, and I, we have the required result. B

Part (c).
Notice that

/i <itr (Z1Qe’) - x;) _

1 n
— tr (lrd/ Qpoe’) + v/ (Wtr (22,Qpoe) — )\e>

1
VT
L (20 - 20, (0)) Q') + Vi <Ltr (29, (0) Quoe’) w)

\/ET —1 —1 6] nT —1 B e

1
Wtr (lpa/Qpgoe’)
= [I.+1I.+1Il., say.
By Lemma 9(c), I1. = o0, (1). In what follows, we will show that as (n,T — oo) with
20,1, =0,(1) and III. = N (0,1¢})
First, by Lemma 8 (i) and (i*), Assumptions 6 and 9, we have
|t7“( ! /lT |t7" (a Pﬁoe ZT)|
\/_
0
< Hall He'lTll llel [18°]]
B \/_ VoG

(G )

8For the proof of Lemma 8(c), see Moon and Perron (2003).

L] <

8%tz |
VnT

22y’
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Next, for I11., write
1 n
IIIC = \/ﬁ <ﬁt7' (Eleﬁf)e/) — )\e)

1 ,
= /n <ﬁtr (E_1€) — A\ E_1Pye') =111, — 111, say.

)- o

First, we have
-1 0r 0 0r 0
1/ 1 1 8 3° BYeE_18° + BV E ep
IIly, = = (—=tr(E_1Pge +ePgpkL’ = —
b 2<\/ﬁTtT( 1g0e + eligo 1)) 2\/ﬁtr<< - > T
(50'50 ) |8 Eas + BV EL e
n

nT
where the third equality holds by Assumption 6 and Lemma 8(d).
Next, for I11.,, by Lemma 7(b), we have

n T
1 N = SIS B e 14
\/ﬁ (TLTtT (E—le ) )\e> - \/ﬁ ; (T ;Eztflezt /\e,z> = N (07 Q(be)

as (n,T — oo) with % — oco. Therefore,

1

IIl,= N (o, %gb;%)

7 — 00, and we have all the required results. B

as (n,T — oo0) with
Proof of Lemma 3

Recall that 8% = B°Hy . Notice by Lemma 13 that, for n and T large, the matrix Hy
is invertible. Then, Pg: = Pgo. So, the required result follows if we show that

~0, <max{%%}) — 0, (1).

HPBK—PB;

Notice that

I - - | B (B ey
O ) O oG (eI [ T
VI o s 5 sl + e

First, using the definitions of BK and 3, we have BK = (%) B = BxAnr. K. By Lemma

12(a), as (n,T — oo) with % — 0, —1%311 = Ak —p Ak, where Ak is a full rank
matrix. Thus,

Al A —1
(&) _0,(0). (40)

n
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Next,

= 0,(1) (41)

_K

NG

N 2 st s
because H%H = {r (éf%lﬁﬁ) = tr (Apr,x) —p tr(Ak). Recall that G = ﬁOHK. By

*/ Q%

1 .
Lemma 13 and Assumption 6, (%) = 0, (1). Similarly, ’ %%H =

O, (1) . Finally,

by Lemma 14(a), —K - —K =0, (max (ﬁ, ﬁ)) . Thus, in view of (39) , we have the
required result,
1
HPBK — Py || = 0, (max \/_ Trp) =) (42)

Proof of Lemma 4.
The proof can be found in Moon and Perron (2003). W

Proof of Theorem 2
In view of (9) and (10) and Lemma 4, the required result follows if we show

tr(Z4Q5, 700 — Z1Q 7., )

(a) nT2 :Op(l)
and
r(Z-1Q4 (Z—27_1) —Z_1Qu (Z — Z_1)
o L )
Part (a)

Part (a) follows because

tr <Z,1QZ;KZL1 . Z,lQBoZL1> tr (Z,lpm;z’,1 - Z,IPBKZL1> tr ((Pﬁ} . P3K> ZLIZ,1>

nT? nT? nT?

24— P 22—, 00, ) = 0, 0.

where the second line holds by Lemma 13 and the last line holds by Lemma 8(a) and

Lemma 3, recalling that HPBK — Ppe || = HQEK — Qpo|| because Hp is asymptotically
invertible. .
Part (b)

By definition Z - Z_ 1 =2 - 279, = \/ET Z%,0 + y, and we write

tr (Z,lQBK (Z—21) = Z1Qp (Z — Z,l)’)
NG
tr (Z,lQBK@ZQ’l - Z,lQﬁo@ZB’I) tr (Z,IQBK;L/ - Z,lQﬁoy/)

= — T + \/HT =—Iy+ 11, say.
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First for I,
Iy = Iyq + Ipp,
where

tr (170'Q; 2%, ~ Ira'QpO2%, )

tr <Z91QBK 0zY, - ZQIQBOQZ%)
nT? '

Lo =
b nT?

and Ibb =

Then, by modifying the proof of Lemma 8(a)? and noting that HPBK H = 0, (1), we have

I

= B e ) - (5)

The proof of Iy, = 0, (1) is similar to the proof of Part (a) and we omit it. Combining
Iy, and Iy, we have

Ib:Op(l).
Next, for 11, notice that
tr (Z_lPBKy’> ptr (Z_1P5Ky’+yPBKZ’_1> 1 B’KBK - , . .
N Nz = Syt ( n ) P 21+ 29) B
Then,
tr (Z_lQBKyI - Z_lQL;oy') tr (Z_lPBKy’ — Z_ng*Ky')
= N
ﬂ ﬂ / ! o ﬂ*/ 7 ! */ /
~ |t ( i K) (e 21+ 2209) ] = (2525 (5 (/204 2010 5]
< Bﬁ 5(2 + ZL1y) B = B3 (471 + ZL1y) Bi|
S 2n\/_T K\Y 4-1 1Y) PK — YL -1Y) Pk
ﬂ b A
Jr ([ () (85 e
< 1 (51{51{ ) H‘ﬁK Y21+ 7Z01y) B = 8% (Y Z-1 + Z1y) Bk
-2 n ny/nT
-1
1 BB YZa+ 20y
3| ( z ) M =

= Il + 1V}, say.

In what follows, we will show that 11, IV, = o, (1).

9See Moon and Perron (2003) for the proof of Lemma 8(a).
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-2 2
First, for I'V;, since Hﬁfﬁ < H%H |Hg||> = O, (1) by Assumption 6 and Lemma

Jn
13. Also, ' % ‘ = Op (1) by Lemma 8(b). Thus, the required result IV, = o, (1)

follows if we show that

which holds because

ﬁ{@};@)‘l <5KHK>H
ﬁ<ﬁ;én;<) (B nB ><5K6K>

(ﬁ?é K> (B'KBK>_1 Hf<ﬁKﬁK oy K>
x! %k -1 U -1 > *

(ﬁK K> <6K6K> {B’ <6K6K>

n n K NG

Op (1) Op (1) (0p (1) + 0, (1)) = 0, (1),

where the last line holds by Lemma 14(c) and (d).
N
For 11}, since (&fnﬁ—f‘) = 0, (1), for the required result, it is enough to show that

IN

BKiﬁ}} / *
s Je

B (v Z1+2 y)Br—BR (v Z1+Z 1y)Bx
n/nT

=0p (1) . Since

yIZ—l + Zily
= Ylpd +alby+Z32Y + (p—1,) 2%, 2%, (p— I,)
JrZg/lzgl (P - In) + (P - I’n) Zg/lzgl + (P - In) Zglly + y’291 (P - In) + y’y,

the required result follows by the triangle inequality if we show that

) | PR R~ o),
.. B/K (p=1.) 2%2% (p— I) BK — 8w (p=1.) 22,22, (p = I) B _
(ii) /T = op(1),
1Bz 20 (0 - 1) B = B 2220 (0 — 1) Bie ||
(iii) /T = op(1)
B (o= 1) 2298y — BE (0 - 1) 2% 8k |
(iv) /T = op(1),
ZO ZO/ ZO ZO/
<>‘5K BoxJREEOR| — o, (),
ond (v) 6Ky’yﬁ§ﬁ§§y’yﬁ% — o0 1).
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The proofs of Parts (i) — (iv) are found in Moon and Perron (2003) and we complete the
proof. W

Proof of Theorem 3

The proof is quite similar to the proof of Theorem 2 in Bai and Ng (2002), and we

omit the proof. The details of the proof can be found in Moon and Perron (2003). B

Proof of Lemma 5.

The details of the proof can be found in Moon and Perron (2003). W
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Table 1. Size of tests for experiment 1
DGP: z;; = ayo + Z?t
Zh=2a T 25{:1 Bijfii + VEei
O(»L‘(),ﬁij, ftj, €Eit ~ 11dN (0, 1)

K=1
£ t K
n T | TruekK IC; BIC; K=0|Trek IC; BIC; K=0| IC; BICs
10 100 | 13.6 406 346 224 8.0 34.0 277 141 | 800 6.75
r=1 20 100 | 104 104 104 263 7.0 70 7.0 18.2 | 1.00  1.00
10 300 | 141 385 21.2 245 8.0 29.6 13.7 141 | 8.00 3.25
20 300 | 111 111 11.1 285 7.3 73 73 20.3 | 1.00  1.00
10 100 | 17.1  53.8 506 424 8.8 470 440 324 | 8.00 6.79
r=3 20 100| 165 196 181  46.8 1.1 148 13.2 424 | 1.05 1.03
10 300 | 132 504 344 419 7.4 403 258 314 | 800 3.30
20 300 | 11.3 113 11.3 502 7.6 76 7.6 455 | 1.00  1.00
10 100 | 139 36.1I 304 139 7.6 271 205 76 | 8.00 6.71
=0 20 100 9.7 12,7 127 9.7 6.8 9.1 9.1 6.8 | 1.00 1.00
10 300| 125 359 170 125 6.6 282 114 6.6 | 800 297
20 300 8.5 10.9  10.9 8.5 5.0 7.2 7.2 50 | 1.00 1.00

Note: Each entry represents the percentage of replications in which the null hypothesis of a
unit root is rejected for the appropriate 5% test with the number of factors either set to the true
number (1), estimated using the information criteria suggested by Bai and Ng (2002), or set to 0
The last two columns provide the mean number of estimated factors with K = 8 for both criteria
considered The number of replications is 1000.

Table 2. Power of tests for experiment 1
DGP: zi = o + Z?t
2 = PiZ?tfl + TZf:l ﬂijftj +VEKei
ai(),ﬂij, ft]‘, €t ~ 19dN (0, 1)

p;~U [0.987 1]
K=1
t t
n T True K 1C; BICs True K 1C; BICs

10 100 | 56.6 33.3 644 6.9 63.3 108 | 445 342 53.7 6.8 524 11.2
=1 20 100 | 744 576 744 57.6 744 576 | 648 57.7 64.8 57.7 64.8 57.7
10 300 | 89.5 77.8 83.7 253 88.2 678|829 77.6 757 246 83.6 64.7
20 300 | 96.6 93.8 96.6 93.8 96.6 93.8 | 945 93.8 945 93.8 94.5 93.8

10 100 | 50.6 23.7 T71.1 6.2 69.0 10.7 ] 36.2 269 62.8 7.0 60.9 8.5
=3 20 100 | 59.8 40.8 60.0 15.8 59.9 30.5 | 51.8 40.8 52.2 20.7 52.0 31.1
10 300 | 68.2 56.4 81.5 12.7 788 469 | 61.0 56.4 758 185 723 18.5
20 300 | 71.3 629 713 629 713 629 | 67.8 625 678 62.5 678 62.5

10 100 | 62.4 38.1 59.4 10.6 59.5 188 | 47.7 40.5 51.0 10.8 50.0 17.8
7=0 20 100 | 80.0 65.5 77.2 56.8 772 56.8 | 71.7 64.5 69.6 57.2 69.6 57.2
10 300 | 96.1 90.2 845 252 909 755920 89.8 773 259 87.0 74.7
20 300 | 99.2 989 994 985 99.4 985 | 98.8 98.7 98.7 981 987 98.1

Note: The first entry in each cell represents the percentage of replications in which the null
hypothesis of a unit root is rejected for the appropriate 5% test with the number of factors either
set to the true number (1), estimated using the information criteria suggested by Bai and Ng
(2002), or set to 0 using the asymptotic critical values The second entry in each cell is the
corresponding size-adjusted power. The number of replications is 1000.

39



Table 3. Size of tests for experiment 2
DGP: z;; = a0 + a1t + Z?t
Z?t = Z?t—l +7 Z]K:l ﬁijftj + \/?eit
Qi0, Q1,05 ftj, et ~ 11dN (0,1)

K=1
tr tr K

n T | TrueK IC; BIC; K=0|TrueK ICi BIC; K=0|IC; BICs

10 100 13.2 45.3  45.5 18.7 11.5 38.5  39.5 18.2 8.00 6.80
=1 20 100 18.5 19.0 185 26.5 16.7 17.2  16.7 24.9 1.01  1.00

10 300 8.7 27.2 18.3 114 8.6 24.2 16.0 11.2 8.00 3.28

20 300 6.9 6.9 6.9 16.0 6.8 6.8 6.8 15.7 1.00 1.00

10 100 10.9 50.7  53.7 22.6 10.0 44.7  46.5 20.1 8.00  6.83
=3 20 100 13.5 15.7  14.3 31.6 12.2 13.6  12.7 27.7 1.04 1.01

10 300 7.6 32.6  20.3 15.9 7.7 26.9 16.9 15.1 8.00  3.33

20 300 7.5 7.5 7.5 21.7 6.9 6.9 6.9 18.3 1.00 1.00

10 100 11.6 47.5 46.9 11.6 10.6 41.0 41.9 10.6 8.00 6.70
=0 20 100 15.6 38.2 38.2 15.6 14.0 34.5 34.5 14.0 1.00 1.00

10 300 5.8 25.4 154 5.8 5.5 22.7 13.6 5.5 8.00 2.97

20 300 8.1 13.0 13.0 8.1 8.5 12.0 12.0 8.5 1.00 1.00

Note: see table 1.
Table 4. Power of tests for experiment 2
DGP: z; = a0 + a1t + Z?t
2 = PiZ?tfl + TZf:l Bijfei + VKe
@40, Q1,855 fijs i ~ iidN (0,1)
p; ~ U [0.98,1]
K=1
th th

n T True K I1C; BICjs True K 1C; BICs

10 100 | 12.3 4,5 43.1 59 46.6 5.3 9.8 43 351 49 385 5.7
=1 20 100 [ 181 5.0 183 44 18.1 5.0 159 45 16.1 4.2 159 4.5

10 300 4.0 2.1 23.1 3.6 12.1 3.7 2.7 1.8 18.2 3.8 8.3 2.5

20 300 | 54 28 54 2.8 54 2.8 3.9 22 39 22 3.9 22

10 100 | 10.7 4.5 51.2 45 53.1 5.5 | 10.2 43 427 2.7 447 4.2
=3 20 100 ] 13.1 4.9 158 4.7 13.0 6.7 | 10.9 45 13.2 4.7 116 6.0

10 300 4.4 29 25.3 0.0 14.8 10.0 5.3 34 19.9 0.0 10.1 9.5

20 300 | 5.8 3.5 58 3.5 5.8 3.5 59 4.3 59 4.3 59 4.3

10 100 | 12.0 7.7 42.7 4.1 46.5 5.2 10,6 7.1 37.1 45 39.0 4.0
=0 20 100|179 6.0 384 58 384 58 [159 51 336 53 336 5.3

10 300 | 41 39 240 3.6 11.7 2.9 2.7 26 186 24 80 1.9

20 300 | 49 2.5 8.8 3.1 8.8 3.1 35 1.5 6.7 1.7 6.7 1.7

Note: see table 2.
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Table 5. Size of tests for experiment 3
DGP: z;; = ayo + Z?t
=2+ 25{:1 Bijfii + VEei
< ftl ) _ ( Ut,1 )
feo U1 + Auy o

0,05, €it, uti ~ 1dN (0,1)

K=2
t t K

n T |TreK IC;, BIC; K=0|TmeK IC; BIC; K=0|1C;, BICs

10 100 17.6 50.3 47.8 29.7 12.1 41.9 38.9 19.3 8.00 6.82
T7=1 20 100 16.9 16.9 16.7 37.2 10.8 10.8 10.8 29.9 1.98 1.96

10 300 15.3 43.0 26.2 28.9 8.1 35.8 17.3 17.9 8.00 3.57

20 300 11.0 11.0 11.2 35.1 7.6 7.4 7.4 25.2 1.99 1.87

10 100 27.7 72.1 69.6 51.3 17.8 66.6 64.2 41.3 8.00 6.81
T=3 20 100 31.3 43.0 36.8 59.1 21.2 37.6 30.3 54.6 2.27 2.18

10 300 174 64.5 51.2 51.6 9.2 56.8 44.2 41.7 8.00 3.71

20 300 16.9 21.2 17.5 53.3 10.7 15.9 11.5 49.1 2.07 2.01

10 100 11.8 34.8 22.0 11.8 7.0 26.6 22.0 7.0 8.00 6.66
7=0 20 100 11.0 114 114 11.0 7.1 7.9 7.9 7.1 1.00 1.00

10 300 13.5 36.5 18.9 13.5 7.5 28.6 12.0 7.5 8.00 2.95

20 300 10.1 12.6 12.6 10.1 7.0 7.5 7.5 7.0 1.00 1.00

Note: see table 1.
Table 6. Power of tests for experiment 3
DGP: z;; = g + 2%
2y =2y 1+ T Zﬁil Bijfti + VEKey
< ftl ) _ ( Ug,1 )
feo U1 + Auy o
O‘iOvﬁijv ity Ug ~ 11dN (0, 1)
K=2
tr iy

n T True K 1C; BICs True K 1C; BICs

10 100 | 63.4 28.9 759 9.2 743 19.6 | 49.6 29.0 67.5 11.9 65.3 16.5
T7=1 20 100 | 80.3 59.0 80.4 587 80.3 58.9 | 71.9 59.0 72.0 589 719 59.2

10 300 | 90.6 78.0 88.5 233 90.6 688 | 85.3 784 82.8 33.8 86.5 65.2

20 300 | 96.7 93.4 96.7 93.6 96.6 93.6 | 95.0 93.0 95.0 93.1 95.1 93.1

10 100 | 59.3 19.8 82.9 10.6 83.4 10.8 | 46.6 21.0 77.4 12.0 789 8.6
T=3 20 100 | 67.3 293 684 9.9 67.8 12.0 | 59.7 33.8 624 80 61.3 17.2

10 300 | 71.0 56.7 92.1 16.3 89.0 374 | 654 57.1 89.3 22.3 85.6 29.0

20 300 | 746 658 753 3.9 74.6 65.6 | 70.7 650 71.6 3.3 70.7 65.8

10 100 | 62.2 35.6 62.2 8.8 62.9 21.3 | 47.0 36.2 52.5 11.8 524 20.8
=0 20 100 | 80.0 65.2 787 60.1 787 60.1 | 71.3 64.7 70.4 60.2 704 60.2

10 300 | 93.2 86.2 86.1 33.0 93.7 67.2 | 88.6 85.9 78.2 42.7 88.9 62.0

20 300 | 99.3 986 99.2 98.1 99.2 98.1 | 98.8 980 985 98.0 98.5 98.0

Note: see table 2.
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