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Abstract

This paper presents a model where individuals have imperfect information about their
preferences (or the environment) and there is an opportunity cost of learning. It shows that
the endogenous decision to collect information before taking an action creates a systematic
bias in the aggregate behavior of a population of rational, profit-maximizing agents. More
precisely, individuals will favor actions with large payoff-variance, i.e., those which may
potentially generate the highest benefits even if they may also generate the biggest losses.
The paper thus concludes that systematically biased choices do not necessarily imply that
agents have irrational, systematically biased beliefs. It also provides testable implications
about the propensity of individuals to incur different types of errors. Some applications
such as biases in judicial decision-making and career choices are discussed.
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1 Motivation

It has been long argued in psychology that individuals have a systematically biased view of

themselves and of the world in general. The recent economic literature has approached the

issue of biased perceptions and biased behavior from different angles. One line of research

takes human cognitive limitations as exogenously given (based mainly on introspection,

casual observation and the previously mentioned research) and discusses their economic

consequences. To give only one representative example, in behavioral finance there are nu-

merous recent studies on the effects, persistence and evolution of entrepreneurial optimism

and entrepreneurial overconfidence in business decision-making.1 Another line of research

questions whether biased perceptions and choices are always the result of a limited cogni-

tive ability to process information. In other words, instead of exogenously assuming the

existence of a bias in beliefs, this second strand of the literature provides microeconomic

foundations for some observed systematic biases in behavior. The arguments are based

on hyperbolic discounting (Carrillo and Mariotti (2000), Bénabou and Tirole (2001 and

2002)), regret and rejoicing (Loomes and Sugden (1997)), anticipatory feelings (Caplin

and Leahy (2001 and 2002), Palacios-Huerta (2004)), self-signaling (Bodner and Prelec

(1997)) and other utilities derived from beliefs (Yariv (2001 and 2002)) among others.

These theories have received an important support due to their intuitive appeal and their

capacity to render the homo-economicus more human. At the same time, all these models

rely on some elements that depart from the standard neoclassical utility paradigm: hy-

perbolic discounting instead of exponential discounting or a utility enjoyed from beliefs

rather than only from outcomes. Mainly for this reason, they have also provoked some

fierce criticisms (see e.g. Read (2001) and Rubinstein (2003) for arguments against hyper-

bolic discounting and Eliaz and Spiegler (2003) for arguments against a direct inclusion

of beliefs in the utility function).

In this paper, individuals with imperfect knowledge about themselves (or about some

element of the environment) choose between alternatives with different risks. We argue

that if learning is feasible but costly, then the endogenous decision to collect information

generates a systematic and testable bias in the aggregate behavior of a population of indi-
1See e.g. Daniel et al. (1998), Manove (1999), Manove and Padilla (1999), Bernardo and Welch (2001)

and Gervais and Odean (2001) out of a long list.
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viduals who do not derive utility from beliefs and are time-consistent, profit maximizers,

rational processors of information. The paper thus falls in the second line of research dis-

cussed above, except that no element of our theory departs from the standard postulates

of dynamic choice under uncertainty.2

To present and illustrate our theory, consider the following stylized example. A city

has two judges identical in most respects: given the same belief about the culpability of a

prisoner, not only they both prefer the same sentence (convict or release), they even incur

the same utility loss if their preferred sentence is not executed. There is however one subtle

difference between them: releasing the prisoner has the greatest variance in payoffs for the

first judge (i.e., highest utility if innocent and lowest utility if guilty) whereas convicting

the prisoner has the greatest variance in payoffs for the second judge (i.e., highest if guilty

and lowest if innocent). Judges initially share the same imperfect information about the

culpability of the accused and can acquire extra evidence at the expense of delaying the

sentence. Should the prisoner be concerned about which judge is assigned to his case?

Given the identical behavior and utility loss of both judges for any given belief, one

could think that they are equally likely to commit any given mistake. However, this

intuition is incorrect: the first judge is more likely to release guilty suspects and less likely

to convict innocent suspects than the second judge. Therefore, all prisoners will strictly

prefer to be on a trial with the first judge, independently of their culpability.

The key for the result is the opportunity cost of learning. Suppose that the prelimi-

nary evidence states that the suspect is likely to be innocent. In this case, the first judge

has a higher opportunity cost than the second one to keep accumulating evidence: he is

tempted to stop the information acquisition process, and enjoy the high expected payoff

of his (hopefully correct) decision to release the prisoner. Conversely, when the prelimi-

nary evidence states that the prisoner is guilty, his cost of continuing the acquisition of

information is lower than for the second judge, given his relatively smaller variance in

payoffs between convicting a guilty and an innocent suspect. He is therefore more likely

to keep learning, with the corresponding likelihood of reversing his prior. Summing up,
2Needless to say, we do not claim that imperfect knowledge and endogenous information acquisition

provide an explanation for all the biases documented in psychology and economics. In this respect, the
paper just adds one new element to the discussion which has some interesting properties: simple and
standard premises together with testable implications.
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these two judges would behave identically if the amount of information collected were fixed

or exogenous. However, the asymmetry in the total payoff of making the right decision

combined to the costly endogenous choice of learning implies that, in expectation, they

will commit systematically different types of errors.

The reader may find obvious that each judge favors the action that has the potential to

yield highest payoff (in equilibrium, the first judge releases more innocent and the second

one convicts more guilty suspects). However, one should realize that by adopting such

attitude, judges are also committing more often the mistakes that are most costly (the

first judge releases more guilty and the second one convicts more innocent suspects).

The result has also a different lecture. Suppose that agents with imperfect self-

knowledge about their talent decide between high-risk and low-risk careers. With en-

dogenous learning, the fraction of agents who eventually opt for the high-risk (respec-

tively low-risk) career will be greater (respectively smaller) than the objective fraction

of individuals with a talent for it. This alternative interpretation is also explored in the

paper.

The models developed independently by Zabojnik (2004) and Santos-Pinto and Sobel

(2004) are closely related to ours. Both works concentrate on a single activity that re-

quires ability and show that agents may perceive themselves as better than their objective

ranking. The argument in the first paper is based on an opportunity cost of learning (as in

our paper) and an exogenous utility function convex in ability. Under appropriate initial

conditions on the discount factor, the initial ability and the degree of convexity of the

utility, only individuals with an expected ability below a certain threshold experiment,

generating the bias. The second paper assumes that agents with heterogenous preferences

about which skills are valuable can invest in improving them. Each agent invests opti-

mally given his preferences but evaluates the skills of others according to his own criteria

rather than the criteria of others. As a result, and contrary to ours and Zabojnik’s paper,

the fraction of individuals who place themselves in the top x percentile of the population

exceeds x for all x (rather than only for some x). Our setting is different from these

two papers in that our agents choose between two alternatives with different risks. The

systematic bias in favor of one activity automatically implies a systematic bias against the

other. That way, we obtain testable predictions about which activity will be favored and
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which one will be avoided, and therefore also about the propensity to commit different

types of errors exclusively as a function of the payoff-variance of the different alternatives.

Last, since we build a model of costly learning with an optimal stopping rule, the paper

is tangentially related to the literatures on optimal experimentation (see e.g. Aghion et

al. (1991), Bolton and Harris (1999) or Keller and Rady (1999) for some representative

examples of papers in this literature) and investment under uncertainty (see e.g. Dixit and

Pindyck (1994) for a survey).

The plan of the paper is the following. We first present a model with two agents with

imperfect information about the state of nature who choose between two actions. For any

given belief, the difference in expected utility between the two actions is the same for both

agents (section 2). We show that their different incentives to acquire information affects

their behavior and expected errors (section 3). We then argue that the model and the

results immediately extend to the case of one agent with imperfect self-knowledge who

learns about his own preferences and manipulates his own choices (section 4). Last, we

offer some concluding remarks (section 5).

2 A model of biased behavior

2.1 States, actions and utilities

We consider the following model. There are two types of agents in the economy (i ∈ {1, 2}).
A type-i agent chooses an action γi ∈ {a, b}. His utility ui(·) depends on his action γi and

the state of the economy s ∈ {A,B}, which is common to all agents. Agents initially have

imperfect knowledge about the state. They share a prior belief p that the true state is A,

that is, Pr(A) = p and Pr(B) = 1− p.

Type-1 and type-2 agents have different preferences, which translate into different

functional representations of their utility. However, we will assume that for any given

belief p ∈ [0, 1], they both have the same difference in expected utility between the two

possible actions. This means not only that they have the same preferred action when

confronted to the same evidence, but also that they have the same willingness to pay in

order to have the freedom of choosing which action they take. We will say that these two

types of agents “for Identical Beliefs are Identical in Behavior and Utility
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Difference” (IBIBUD). The property is summarized as follows.

Definition Type-1 and type-2 agents are IBIBUD if and only if:

E
[
u1(a)− u1(b)

]
= E

[
u2(a)− u2(b)

]
∀ p

which, in particular, implies that arg max
γ1

E[u1(γ1)] ≡ arg max
γ2

E[u2(γ2)] for all p.

For expositional purposes, we will consider a simple representation of the utility functions

of type-1 and type-2 agents:

u1(a) =

{
h if s = A

−h if s = B
and u1(b) =

{
−l if s = A

l if s = B
, (1)

u2(a) =

{
l if s = A

−l if s = B
and u2(b) =

{
−h if s = A

h if s = B
, (2)

with h > l > 0. Under this representation, action a has the greatest variance in payoffs

for agent 1 and action b the greatest variance in payoffs for agent 2. Given (1) and (2),

the IBIBUD property translates into:

E
[
ui(a)−ui(b)

]
= (h+ l)(2p−1) ∀ i ⇒ γi = a if p > 1/2 and γi = b if p < 1/2 ∀ i.

Figure 1 provides a graphical representation of these utilities.
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Figure 1. Utility representations for type-1 and type-2 agents.

The theory on reveal preferences states that utility functions are only modelling devices

used to represent rank-orders of preferences; actions and (sometimes) payments incurred
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in order to choose actions are usually the observable variables from which we deduce the

preferences of individuals and construct the utility representations. Therefore, one could

think that two agents with preferences that are obviously different given their different

utility representations, but who satisfy the IBIBUD property (as the ones represented by

types 1 and 2) should be indistinguishable, as long as the set of choices is restricted to a

and b. This intuition is correct either when information is freely available or exogenously

given, but what happens when we allow individuals to decide how much costly information

they collect?

2.2 Information

In order to answer this question, we need to introduce the information acquisition tech-

nology. Learning is formalized in the simplest possible way. We denote by τi,t the decision

of agent i at a given date t ∈ {0, 1, ..., T − 1}, where T is finite but arbitrarily large. At

each date, his options are either to take the optimal action conditional on his current

information (τi,t = γi ∈ {a, b}) or to wait until the following period (τi,t = w). The action

is irreversible, so if the agent undertakes it, then payoffs are realized and the game ends.

Waiting has costs and benefits. On the one hand, the delay implied by the decision to wait

one more period before acting is costly. We denote by δ (< 1) the discount factor. On the

other hand, the agent obtains between dates t and t + 1 one signal σ ∈ {α, β} imperfectly

correlated with the true state. Information increases the confidence of the agent’s beliefs

and therefore improves the quality of his future decision. As long as the agent waits, he

keeps the option of undertaking action a or b in a future period, except at date T in which

waiting is not possible anymore, so the agent’s options are reduced to actions a and b.3

The relation between signal and state is the following:

Pr[ α | A ] = Pr[ β | B ] = θ and Pr[ α | B ] = Pr[ β | A ] = 1− θ,

where θ ∈ (1/2, 1) captures the accuracy of information: as θ increases, the informational

content of a signal σ increases (when θ → 1/2 signals are completely uninformative, and

when θ → 1 one signal perfectly informs the agent about the true state).4

3A finite horizon game ensures the existence of a unique stopping rule at each period that can be
computed by backward induction. By setting T arbitrarily large we can determine the limiting properties
of this optimal stopping rule.

4It is formally equivalent to increase the correlation between signal and state or to increase the number
of signals between two dates (both can be captured with the parameter θ).
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Suppose that a number nα of signals α and a number nβ of signals β are revealed during

the nα + nβ periods in which the agent waits. Using standard statistical techniques, it is

possible to compute the agent’s posterior belief about the state of the economy:

Pr(A | nα, nβ) =
Pr(nα, nβ | A) Pr(A)

Pr(nα, nβ | A) Pr(A) + Pr(nα, nβ | B) Pr(B)

=
θnα−nβ · p

θnα−nβ · p + (1− θ)nα−nβ · (1− p)

It is interesting to notice that the posterior depends only on the difference between the

number of signals α and the number of signals β. So, roughly speaking, two different signals

“cancel out”. The relevant variable which will be used from now on is n ≡ nα − nβ ∈ Z.

Also, we define the posterior probability µ(n) ≡ Pr(A | na, nb).5 Last, when solving the

model, we will treat n as a real number (instead of an integer as we should in order to

be rigorous). This mathematical abuse is made only for technical convenience and it does

not affect the substance of our results.

Before solving the game, we want to provide a stylized example that illustrates the

meaning of the IBIBUD property, the utility representations (1) and (2), and the costly

decision to acquire information.

2.3 An example: court judgement under civil law

As informally suggested in the introduction, the main ingredients of our model may cap-

ture judicial decisions. Judge i (∈ {1, 2}) must choose whether to release (action a) or

convict (action b) an offender. The prisoner is either innocent (state A) or guilty (state

B). The judge’s prior belief of the offender being innocent is p = Pr(A). The judge

can acquire information about the culpability of the accused (signals σ) at the cost of

delaying his sentence. According to (1) and (2), for any belief p, the differential in util-

ity between convicting and releasing the offender is the same for both types of judges

(IBIBUD property). In particular, they both prefer to release the prisoner if his proba-

bility of being innocent is above a certain threshold (in our case, 1/2) and convict him

otherwise. The main difference is that letting the prisoner free is the riskiest choice for

judge 1 (payoff u1(a) ∈ {−h, h}) whereas convicting him is the riskiest choice for judge 2
5Some properties of µ(n) are: (i) lim

n→−∞
µ(n) = 0, (ii) lim

n→+∞
µ(n) = 1, and (iii) µ(n + 1) > µ(n) ∀n.
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(payoff u2(b) ∈ {−h, h}).6

3 Information acquisition and optimal decision-making

3.1 Option value of waiting and optimal stopping rule

In this section, we show that under costly acquisition of information two IBIBUD agents

may behave in a systematically different way. Given the information revelation structure

presented in section 2.2, agents face a trade-off between delay and information. This

trade-off has been extensively analyzed in the literature on investment under uncertainty.

In order to find the optimal stopping rule, we first determine the value function V t
i that

a type-i agent maximizes at date t. It can be written as:

V t
1 (n)=


max

{
h(2µ(n)−1), δ

[
ν(n)V t+1

1 (n + 1) + (1−ν(n))V t+1
1 (n−1)

]}
if µ(n) > 1

2

max
{

l(1−2µ(n)), δ
[
ν(n)V t+1

1 (n + 1) + (1−ν(n))V t+1
1 (n−1)

]}
if µ(n) < 1

2

(3)

V t
2 (n)=


max

{
l(2µ(n)−1), δ

[
ν(n)V t+1

2 (n + 1) + (1−ν(n))V t+1
2 (n−1)

]}
if µ(n) > 1

2

max
{

h(1−2µ(n)), δ
[
ν(n)V t+1

2 (n + 1) + (1−ν(n))V t+1
2 (n−1)

]}
if µ(n) < 1

2

(4)

where ν(n) = µ(n)θ+(1−µ(n))(1−θ). In words, at date t and given a difference of signals

n that implies a posterior µ(n) > 1/2, type-1 agent chooses between taking action a with

expected payoff hµ − h(1 − µ) or waiting. In the latter case, signal α (respectively β)

is received with probability ν (respectively 1− ν) and the value function in the following

period t+1 becomes V t+1
1 (n+1) (respectively V t+1

1 (n−1)), discounted at the rate δ. For

µ(n) < 1/2, the argument is the same, except that the optimal action if the agent does

not wait is b with payoff −lµ + l(1 − µ). The reasoning for a type-2 agent is the same.

Given (3) and (4), we can determine the optimal strategy for each type. This technical

result is key for the subsequent analysis.

Lemma 1 For all δ < 1 and h > l > 0, there exist (n∗1,t, n
∗∗
1,t, n

∗
2,t, n

∗∗
2,t) at each date t s.t.:

(i) τ1,t = b if n 6 n∗1,t, τ1,t = a if n > n∗∗1,t and τ1,t = w if n ∈ (n∗1,t, n
∗∗
1,t).

(ii) τ2,t = b if n 6 n∗2,t, τ2,t = a if n > n∗∗2,t and τ2,t = w if n ∈ (n∗2,t, n
∗∗
2,t).

By the symmetry of types 1 and 2: µ(n∗∗1,t) = 1− µ(n∗2,t) and µ(n∗1,t) = 1− µ(n∗∗2,t).

6In other words, judge 1 is most willing to release an innocent and most averse to convict an innocent
whereas judge 2 is most willing to convict a guilty and most averse to release a guilty prisoner.
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Last, but most importantly: µ(n∗1,t) < µ(n∗2,t) < 1/2 < µ(n∗∗1,t) < µ(n∗∗2,t).

Proof. See Appendix. 2

The idea is simple. Agents trade-off the costs of delaying their choice between actions

a and b with the benefits of acquiring a more accurate information. When µ(n) > 1/2,

waiting becomes more costly as n increases, because delaying the action one extra period

reduces the expected payoff by an amount proportional to 2µ(n) − 1. Similarly, when

µ(n) < 1/2, waiting becomes more costly as n decreases, because delaying the action

reduces the expected payoff by an amount proportional to 1 − 2µ(n). In other words,

at each date t, there are two cutoffs µ(n∗∗i,t) > 1/2 and µ(n∗i,t) < 1/2 for a type-i agent.

When µ > µ(n∗∗i,t), the individual is “reasonably confident” that the true state is A, and

when µ 6 µ(n∗i,t), he is “reasonably confident” that the true state is B. In either case, the

marginal gain of improving the information about the true state is offset by the marginal

cost of a reduction in the expected payoff due to the delay it implies. As a result, he

strictly prefers to stop learning and take his optimal action. For intermediate beliefs, that

is when µ(n) ∈ (µ(n∗i,t), µ(n∗∗i,t)), a type-i agent prefers to keep accumulating evidence.

The most interesting property of these cutoffs is that:

µ(n∗∗1,t)− 1/2 < 1/2− µ(n∗1,t) and µ(n∗∗2,t)− 1/2 > 1/2− µ(n∗2,t)

It states that the confidence of a type-1 agent on the true state being A when he takes

action a is smaller than his confidence on the true state being B when he takes action b.

The opposite is true for a type-2 agent. Comparing the two agents, it means that a type-1

agent will need fewer evidence in favor of A in order to decide to stop collecting news and

take action a and more evidence in favor of B in order to stop collecting news and take

action b than a type-2 agent.

The intuition for this result is simply that, given the delay associated to the accumu-

lation of evidence, the marginal cost of learning is a function of the agent’s belief and

expected payoff of taking an action. For a type-1 individual, it is proportional to h(1− δ)

when µ > 1/2 and to l(1− δ) when µ < 1/2. As a result, and other things being equal, it

is relatively less interesting to keep experimenting when the action currently optimal is a

rather than b. The argument for a type-2 agent is symmetric. The shape of these cutoffs

is graphically represented in Figure 2.
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Figure 2. Stopping rules for type-1 and type-2 agents.

Suppose now that T →∞. This means that n∗i,t → n∗i and n∗∗i,t → n∗∗i for all t. Denote

by Pr(τi = γi | s) the probability that a type-i individual eventually undertakes action

γi (∈ {a, b}) when the true state is s (∈ {A,B}). Also, let µ∗∗ ≡ µ(n∗∗1 ) and µ∗ ≡ µ(n∗1)

(which means that µ(n∗∗2 ) = 1− µ∗ and µ(n∗2) = 1− µ∗∗). Last, suppose that type-1 and

type-2 agents start with the same prior belief p ∈ (1 − µ∗∗, µ∗∗). Each agent chooses the

amount of information he collects before undertaking an action and the signals obtained

by the agents are independent. Their optimal stopping rule is given by Lemma 1. In

the main proposition of the paper, we compare the relative probabilities that each agent

undertakes action a and action b.

Proposition 1 For all p ∈ (1− µ∗∗, µ∗∗), δ < 1, h > l > 0 and when T →∞ we have:

(i) Pr(τ1 = a | B) > Pr(τ2 = a | B) and Pr(τ1 = b | A) < Pr(τ2 = b | A).

Judge 1 releases more guilty suspects and convicts fewer innocent suspects than judge 2.

(ii) ∂ Pr(τ1=a | s)
∂h > 0 > ∂ Pr(τ2=a | s)

∂h and ∂ Pr(τ1=a | s)
∂l < 0 < ∂ Pr(γ2=a | s)

∂l for all s.

Keeping IBIBUD, as the difference in payoffs between actions (h− l) increases, the differ-

ence in behavior between judges 1 and 2 also increases.

Proof. Part (i) is a direct consequence of µ(n∗∗2 ) > µ(n∗∗1 ) and µ(n∗2) > µ(n∗1). Part (ii)

results from the fact that, also by Lemma 1, ∂n∗1
∂h < 0, ∂n∗∗1

∂h < 0, ∂n∗1
∂l > 0, ∂n∗∗1

∂l > 0 and by

symmetry ∂n∗2
∂h > 0, ∂n∗∗2

∂h > 0, ∂n∗2
∂l < 0, ∂n∗∗2

∂l < 0.

These comparative statics fulfill the purpose of our analysis. However, for the reader

interested, the analytical expressions of the probabilities Pr(τi | s) are derived in Brocas

10



and Carrillo (2004, Lemma 1) for an initial prior p and exogenous stopping posteriors µ∗

and µ∗∗.7 These are given by: Pr(τ1 = a | A) = p−µ∗

µ∗∗−µ∗
µ∗∗

p , Pr(τ1 = a | B) = p−µ∗

µ∗∗−µ∗
1−µ∗∗

1−p ,

Pr(τ2 = a | A) = p−(1−µ∗∗)
µ∗∗−µ∗

1−µ∗

p , Pr(τ2 = a | B) = p−(1−µ∗∗)
µ∗∗−µ∗

µ∗

1−p . 2

Proposition 1 shows that, even if type-1 and type-2 agents are IBIBUD, they will make

systematically different choices, at least in a stochastic sense. As shown in Lemma 1, a

type-1 agent is relatively more likely to stop collecting news when the preliminary evidence

points towards the optimality of action a than when it points towards the optimality of

action b (i.e., when the first few signals are mainly α and not β). Stated differently, the

evidence in favor of A needed to induce a type-1 agent to take action a is smaller than

the evidence in favor of B needed to induce him to take action b. The opposite is true for

a type-2 agent. As a result, in equilibrium, a type-1 agent is more likely to take action a

by mistake (i.e., when the true state is B) and less likely to take action b by mistake (i.e.,

when the true state is A) than a type-2 agent (part (i) of the proposition). Note that the

endogenous choice to acquire information is crucial for this result: by definition of IBIBUD,

the two types of agents would take action a with the same probability if the number of

signals they receive were externally or exogenously imposed. Last, as the difference in the

variance of payoffs (h− l) increases, the likelihood that the two agents behave differently

also increases: type-1 takes more often action a by mistake and less often action b by

mistake whereas the opposite is true for type-2 (part (ii) of the proposition). In terms

of our judicial example, Proposition 1 suggests that despite the similarities between these

two judges, their actual behavior can be substantially different: judge 1 releases guilty

suspects more often and convicts innocent suspects less often than judge 2.

The systematic differences in the decisions (and therefore errors) made by the two

types of agents have some immediate yet interesting implications.

Proposition 2 (i) Different types of agents have different effects on the welfare of third

parties: independently of their culpability, all suspects prefer judge 1 rather than judge 2.

(ii) Agents’ types can be inferred from decisions but also from the delay in making

them: judge 1 takes less time to release and more time to convict suspects than judge 2.
7The paper uses similar techniques to study a different issue. It analyzes a principal/agent model with

incomplete contracting and determines the rents obtained by the former due to his ability to control the
flow of public information.
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Note that, in our model, agents select a stopping rule that increases the probability of

taking the action with highest payoff (the utility for judge 1 of releasing an innocent and

for judge 2 of convicting a guilty is h in both cases). This might seem a trivial conclusion.

However, the other side of the coin is that, with this strategy, agents are also increasing the

probability of making the mistakes that are most costly (the utility for judge 1 of releasing

a guilty and for judge 2 of convicting an innocent is −h in both cases). The paper thus

provides one simple reason, namely the payoff-variance of the different alternatives in the

different states of nature, that explains systematic biases for and against some actions or,

more exactly, the propensity of individuals to incur different types of errors.

We conclude this section with some remarks on the model and interpretations.

Remark 1. As it should be clear, when we refer to a “bias” we do not mean that agents

are fooled, deceived or misled. Systematic “mistakes” are, by definition, impossible in our

setting, given the agents’ rationality in their acquisition and interpretation of information

and their optimal choice of action conditional on the information they possess. However,

their decisions can be systematically tilted towards some actions and away from others.

Technically, the point is simply that the endogenous decision to acquire information cannot

affect the first-order moment of beliefs (i.e., the average belief in the population always

coincides with the true average). However, it may influence the higher-order moments and,

in particular, the skewness in the distribution of beliefs. Given a limited set of actions,

two populations whose distribution of beliefs have the same average but different skewness

will exhibit different aggregate behaviors.

Remark 2. The model relies on irreversibility of actions or no learning after the decision is

made. Irreversibility is quite natural in the judicial example, but either assumption can be

too extreme in other contexts. Nevertheless, one should realize that partial irreversibility

is enough to generate a short run bias towards the riskier of the two alternatives. More-

over, if the environment changes stochastically, information becomes obsolete over time,

preventing the agent from learning the state with certainty. In that case, the decision bias

may persist in the long run even under partial reversibility.

Remark 3. The model argues that, ceteris paribus, agents favor actions with higher rather

than lower variance in payoffs and, at some point, we have used the rather convenient

labels of “riskier” vs. “safer”. Needless to say, we are not building a general theory of

12



decision-making under risk: if, in a particular setting, risk-aversion factors crowd-out any

other motivation or if the risky action has an infinitely negative payoff in one state, then

agents will choose the safe alternative independently of their type. Our model is not design

to address this issue.

3.2 Comparative statics

The importance of the effects highlighted in Proposition 1 is an empirical question, in-

teresting but largely beyond the scope of this paper. In this section, we simply want to

provide simple numerical examples that give an idea of the propensity of agents to make

different types of mistakes. Consider the extreme situation in which h > 0 and l → 0.8

From the proof of Proposition 1, the probability that a type-i agent makes the wrong

decision is:

Pr(τ1 = a | B) =
p

1− p
× 1− µ∗∗

µ∗∗
and Pr(τ1 = b | A) → 0

Pr(τ2 = a | B) → 0 and Pr(τ2 = b | A) =
1− p

p
× 1− µ∗∗

µ∗∗

A type-1 agent will never take action b mistakenly, and a type-2 agent will never take

action a mistakenly. Simple comparative statics about the likelihood of taking the wrong

action given a prior probability p and a stopping posterior µ∗∗ are illustrated in Figure 3.
8This means that n∗1 → −∞, n∗∗2 → +∞ and therefore µ∗ → 0. This assumption is by no means

necessary. However, it allows us to make neat comparative statics by reducing the number of parameters
to two (p and µ∗∗).
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p14/52/31/5 1/3 1/2

6

1

1/2

µ∗∗ = 2/3 µ∗∗ = 4/5µ∗∗ = 2/3µ∗∗ = 4/5

Pr(τ1 = a | B)
Pr(τ2 = b | A)

Figure 3. Frequency of mistakes by type-1 and type-2 agents.

As an illustrative case, suppose that half the convicts are guilty (p = 1/2) and the stopping

rule is µ∗∗ = 2/3. Judge 1 releases all the innocent convicts and one-half of the guilty ones

(3/4 of the population) and convicts one-half of the guilty suspects (the remaining 1/4 of

the population). By contrast, judge 2 releases only one-half of the innocent suspects and

convicts all the guilty suspects and one-half of the innocent ones. Last, note that µ∗∗ is

increasing in δ, and lim
δ→1

µ∗∗ = 1. As individuals become more patient, they acquire more

information and incur fewer mistakes. If they are infinitely patient, the cost of waiting

vanishes. It then becomes optimal for both types to be (almost) perfectly informed before

choosing any action, and (almost) no mistake occurs in equilibrium.

3.3 Welfare analysis

Suppose that a welfare maximizing principal can ask several agents their opinion about

which action a or b should be taken. For simplicity, we assume that each agent is interested

in maximizing the probability of providing the correct appraisal (a if A and b if B),

independently of whether the suggestion is followed by the principal or not. Such behavior

is rational if the appraisal is publicly observed, the state is ex-post revealed and agents

have career-concerns: their payoff is then a function of the quality of their suggestion, and

not a function of the final action taken. In this setting, each agent’s optimal rule for the

acquisition of information coincides with that of Lemma 1, so increasing the number of
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agents can only decrease the probability of an incorrect decision.9 We assume that the

number of agents is fixed but the principal can choose the proportion of type-1 and type-2

individuals. Given that the two types of agents have different biases in the errors they

commit, is it optimal to select all agents of the same type or to have appraisals from agents

of both types?

To answer this question, we consider the simplest version of our model (which can

be generalized in a number of dimensions). We denote by γj
i the recommendation made

by the jth agent of type-i. We suppose that l → 0, so that Pr(γj
1 = b | A) = 0 and

Pr(γj
2 = a | B) = 0 for all j. The total number of agents is fixed and equal to n. The

principal chooses x, the number of type-1 agents, n−x being the number of type-2 agents.

Last, the principal’s sole concern is to minimize the probability of a mistake, i.e., it is

equally costly to take action a when s = B than action b when s = A. If we denote by

γP ∈ {a, b} the action taken eventually by the principal, we have the following result.

Proposition 3 If p < 1/2, then x = n. The principal chooses γP = a if γj
1 = a ∀j and

γP = b otherwise. Also, Pr(γP = b | A) = 0 and Pr(γP = a | B) =
(

p
1−p ×

1−µ∗∗

µ∗∗

)n
.

If p > 1/2, then x = 0. The principal chooses γP = b if γj
2 = b ∀j and γP = a

otherwise. Also, Pr(γP = b | A) =
(

1−p
p × 1−µ∗∗

µ∗∗

)n
and Pr(γP = a | B) = 0.

Proof. Fix x. Given l → 0, we have Pr(γ1 = b | A) = 0 and Pr(γ2 = a | B) = 0, so the

only possible error arises when all type-1 agents announce γj
1 = a (j ∈ {1, ..., x}) and all

type-2 agents announce γk
2 = b (k ∈ {1, ..., n− x}). The remaining question is whether, if

this happens, the principal will take action a or action b.

• Suppose that the principal minimizes costs with γP = a. The expected loss is then:

LA(x) = Pr(B) ·
∏x

j=1 Pr(γj
1 = a | B) ·

∏n−x
k=1 Pr(γk

2 = b | B) = (1− p)
(

p
1−p ×

1−µ∗∗

µ∗∗

)x

So, conditional on taking γP = a, the principal optimally sets x = n, and the loss is:

LA(n) = (1− p)
(

p
1−p ×

1−µ∗∗

µ∗∗

)n
(5)

9By contrast, if individuals were rewarded as a function of the quality of the final decision, then they
would integrate the behavior of other agents in their choice to acquire information (and, possibly, free-ride
accordingly). The optimal stopping rule would then be modified and it would not be always true that
increasing the number of agents improves the quality of the final decision. For an analysis of this free-riding
problem in juries under different voting rules, see Feddersen and Pesendorfer (1998).
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• Suppose that the principal minimizes costs with γP = b. The expected loss is then:

LB(x) = Pr(A) ·
∏x

j=1 Pr(γj
1 = a | A) ·

∏n−x
k=1 Pr(γk

2 = b | A) = p
(

1−p
p × 1−µ∗∗

µ∗∗

)n−x

So, conditional on taking γP = b, the principal optimally sets x = 0, and the loss is:

LB(0) = p
(

1−p
p × 1−µ∗∗

µ∗∗

)n
(6)

Last, from (5) and (6): LA(n) ≶ LB(0) ⇔ (1− p)
(

p
1−p

)n
≶ p

(
1−p

p

)n
⇔ p ≶ 1/2. 2

Proposition 3 states that even if the principal can choose the source of information, a

systematic bias in his choice will still be present (similar in nature as before but quanti-

tatively smaller due to the greater amount of information obtained). The idea is simple.

Since the principal dislikes equally both types of errors, he will select agents so as to mini-

mize their likelihood of committing a mistake, independently of the nature. We know from

Proposition 1 that the likelihood of providing an incorrect appraisal is inversely propor-

tional to the distance between the prior belief and the posterior at which the agent decides

to stop collecting evidence and recommends an action (formally, µ∗∗−p for a type-1 agent

and p− (1− µ∗∗) for a type-2 agent). Hence, if p < 1/2, type-1 agents are relatively less

likely to mislead the principal than type-2 agents (|µ∗∗−p| > |p−(1−µ∗∗)|), and therefore

it is optimal to pick only type-1 agents. The opposite is true when p > 1/2. Overall, fewer

mistakes occur as we increase the number of agents who provide an appraisal. However,

the systematic bias in the final decision persists.

4 Self-perception, self-influence and self-biased behavior

Consider an adolescent who decides whether to devote his time and energy to pursue a ca-

reer in sports or to continue his intellectual education. Although at early stages in life it is

possible to combine training in both areas, each year of non-exclusive attention decreases

the long-run expected return in either domain. Success in sports depends largely on “tal-

ent”, an intangible combination of physical strength and coordination, performance under

pressure and other abilities intrinsic but unknown to individuals. Young players do not

know their own talent, although training and repeated exposure to the activity provides

information. The career choice of this individual can be formally represented using our

previous model of a type-1 agent, with a being the decision to concentrate on sports, b the
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decision to concentrate on intellectual education and w the decision to pursue both activ-

ities and wait before making a choice. States A and B denote respectively a person with

high talent and low talent for sport (say, relative to his talent for intellectual activities),

with p being the individual’s own initial assessment of his talent. Last, assuming that the

individual is only concerned with earnings, it seems reasonable to argue that payoffs have

a higher variance in sports (h or −h) than in intellectual endeavors (l or −l).

According to our theory, an adolescent will first combine both activities and start

learning about his talent. Limited information pointing towards a brilliant sports career

(i.e., few α-signals) will persuade him to concentrate on this activity. By contrast, a large

amount of information in favor of intellectual ability (i.e., many β-signals) will be needed

to induce him to focus on an intellectual career. Overall, we will observe more (less)

professional athletes (intellectuals) than the objective fraction of agents with a talent for

sports (with a talent for intellectual activities). Also, more agents will mistakenly choose

a sport career than mistakenly choose an intellectual career. This theory is obviously

simplistic and, as such, should not be taken literally10 (also, the caveat mentioned in

footnote 2 applies here). However, it demonstrates a general point: under imperfect self-

knowledge and an opportunity cost of delaying choices, individuals will systematically bias

their career decisions towards the alternative with the potential to generate the highest

payoff, even at the risk of obtaining the lowest payoff.

Can we label this behavior as “self-influence” or “self-manipulation”? In a sense, the

choice of this specific stopping rule in the acquisition of information can be seen as a

(conscious or unconscious) attempt towards a self-bias: the individual actively convinces

himself that he has good reasons to try and become a soccer superstar. However, we have

also proved that such stopping rule is optimal for a rational person given his structure of

payoffs and the opportunity cost of learning. Whether we think of it as self-influence or

not, the main message is that from an observed or reported systematic bias in the behavior

of a population of agents we cannot conclude the existence of an irrational bias in their

belief.
10Note for example that learning about talent in the chosen activity never stops and switching the career

focus is always feasible. However, recall that what matters for our theory is partial irreversibility of actions
(see Remark 2). Therefore, the same results apply as long as the individual has a handicap in going back to
one activity after a number of years entirely dedicated to the other, an assumption that seems reasonable.
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5 Concluding remarks

Incentives for decision-making in judicial contexts have received the attention of econo-

mists in the past recent years (see Shin (1998), Feddersen and Pesendorfer (1998) and

Dewatripont Tirole (1999) among others). Our paper can be seen as a further step in this

important research area, as it shows how judges with very similar preferences may end up

behaving quite differently and committing opposite types of mistakes. However, we think

that our model and results are of interest for a larger class of problems. The paper has

explored the distinction between (irrational) systematically biased beliefs and (rational)

systematically biased behaviors that result from the endogenous and costly decision to

acquire information. We have pointed out as our major conclusion that individuals will

tend to bias their choices in favor of actions with highest variance in payoffs across states

and away from actions with lowest variance in payoffs across states. In some applications

(e.g. career choices), payoffs in the different activities are likely to be endogenously deter-

mined and possibly inversely related to the fraction of individuals who choose that career.

Adding this general equilibrium element and studying whether this possibility increases

or decreases the magnitude of the bias is an interesting extension left for future work.11

Naturally, it would be absurd to pretend that our explanation can account for all the

biases documented first in the psychology and now in the behavioral economics literature.

First, because the ingredients of our model are not relevant in many settings.12 Second,

because some aggregate beliefs are impossible to reconcile with statistical inference.13 And

third, because the behavioralist explanations reviewed in the introduction seem to do a

good job in some situations. Yet, we feel that adding this extra element to the discussion

can be very useful if we want to improve our understanding of the reasons, means and

situations where individuals distort their choices.

11We thank J. Zabojnik for suggesting this extension.
12Among other things, stakes have to be sufficiently small, otherwise the incentives of individuals to

become perfectly informed before choosing their optimal action will crowd-out all other motivations (think
for example of a patient deciding whether to learn from the doctor his health state concerning a curable
disease). Also, incomplete information and costly learning have to be crucial elements at play.

13Bayesian inference can be compatible with more than half of the population believing to be above
average (we just need to play with the skewness of the distribution). However, the average belief can never
exceed the true average.
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Appendix: Proof of Lemma 1

Type-1 agent.

Date T . Denote V T
1 (n) = max{h(2µ(n)− 1); l(1− 2µ(n))} and let:

Y t
1 (n) = V t

1 (n)− h(2µ(n)− 1) and W t
1(n) = V t

1 (n)− l(1− 2µ(n)).

For t = T , we have Y T
1 (n) = max{0; (h + l)(1 − 2µ(n))} and W T

1 (n) = max{0; (h +
l)(2µ(n)− 1)}. Since µ(n) is increasing in n, W T

1 (n) is non-decreasing and Y T
1 (n) is non-

increasing in n. Besides, limn→+∞ µ(n) = 1 and limn→−∞ µ(n) = 0, so there exists n

defined by µ(n) = 1/2 such that for all n > n then τ1,T = a, and for all n < n then
τ1,T = b.

Date T − 1.
Case-1: n > n. V T−1

1 (n)=max{h(2µ(n)−1); δν(n)V T
1 (n+1)+ δ(1−ν(n))V T

1 (n−1)} and

Y T−1
1 (n) = max{0,−(1− δ)h(2µ(n)− 1) + δν(n)Y T

1 (n + 1) + δ(1− ν(n))Y T
1 (n− 1)}

where Y T−1
1 (n) is defined on (n, +∞). Since ν(n) is increasing in n and Y T

1 (n) is non-
increasing in n, we can check that the right-hand side (r.h.s.) of Y T−1

1 (n) is decreasing in
n, and therefore there exists a cutoff n∗∗1,T−1 such that for all n > n∗∗1,T−1 then τ1,T−1 = a,
and for all n ∈ [n, n∗∗1,T−1) then τ1,T−1 = w. To solve the previous equation, the cutoff has
to be such that n∗∗1,T−1 + 1 > n and n∗∗1,T−1 − 1 < n, and therefore it is the solution of:

0 = h · f(n∗∗1,T−1, δ)− l · g(n∗∗1,T−1, δ)

where f(n∗∗1,T−1, δ) ≡ 2µ(n∗∗1,T−1)− 1− δν(n∗∗1,T−1)(2µ(n∗∗1,T−1 + 1)− 1) and g(n∗∗1,T−1, δ) =
δ(1− ν(n∗∗1,T−1))(1− 2µ(n∗∗1,T−1− 1)). Differentiating with respect to h, l and δ we have:14

∂n∗∗1,T−1

∂h

[
l · gn(n∗∗1,T−1, δ)− h · fn(n∗∗1,T−1, δ)

]
= f(n∗∗1,T−1, δ)

∂n∗∗1,T−1

∂l

[
h · fn(n∗∗1,T−1, δ)− l · gn(n∗∗1,T−1, δ)

]
= g(n∗∗1,T−1, δ)

∂n∗∗1,T−1

∂δ

[
l · gn(n∗∗1,T−1, δ)− h · fn(n∗∗1,T−1, δ)

]
= h · fδ(n∗∗1,T−1, δ)− l · gδ(n∗∗1,T−1, δ)

Given f(n∗∗1,T−1, δ) > 0, g(n∗∗1,T−1, δ) > 0, l · gn(n∗∗1,T−1, δ) − h · fn(n∗∗1,T−1, δ) < 0, h ·
fδ(n∗∗1,T−1, δ)− l · gδ(n∗∗1,T−1, δ) < 0, we finally have:

∂n∗∗1,T−1

∂h
< 0,

∂n∗∗1,T−1

∂l
> 0,

∂n∗∗1,T−1

∂δ
> 0.

14The subscripts n and δ denote a partial derivative with respect to that argument.
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Case-2: n 6 n. V T−1
1 (n)=max{l(1− 2µ(n)); δν(n)V T

1 (n+1)+ δ(1− ν(n))V T
1 (n− 1)} and

W T−1
1 (n) = max{0,−(1− δ)l(1− 2µ(n)) + δν(n)W T

1 (n + 1) + δ(1− ν(n))W T
1 (n− 1)}

where W T−1
1 (n) is defined on (−∞, n). Since ν(n) is increasing in n and W T

1 (n) is non-
decreasing in n, we can check that the r.h.s. of W T−1

1 (n) is increasing in n, and therefore
there exists a cutoff n∗1,T−1 such that for all n ∈ (n∗1,T−1, n] then τ1,T−1 = w, and for
all n < n∗1,T−1 then τ1,T−1 = b. This cutoff has to be such that n∗1,T−1 + 1 > n and
n∗1,T−1 − 1 ≤ n, so it is solution of:

0 = l · x(n∗1,T−1, δ)− h · y(n∗1,T−1, δ)

where x(n∗1,T−1, δ) = 1−2µ(n∗1,T−1)−δ(1−ν(n∗1,T−1))(1−2µ(n∗1,T−1−1)) and y(n∗1,T−1, δ) =
δν(n∗1,T−1)(2µ(n∗1,T−1 + 1)− 1). Again, differentiating with respect to h, l and δ we have:

∂n∗1,T−1

∂h

[
l · xn(n∗1,T−1, δ)− h · yn(n∗1,T−1, δ)

]
= y(n∗1,T−1, δ)

∂n∗1,T−1

∂l

[
h · yn(n∗1,T−1, δ)− l · xn(n∗1,T−1, δ)

]
= x(n∗1,T−1, δ)

∂n∗1,T−1

∂δ

[
l · xn(n∗1,T−1, δ)− h · yn(n∗1,T−1, δ)

]
= h · yδ(n∗1,T−1, δ)− l · xδ(n∗1,T−1, δ)

Given y(n∗1,T−1, δ) > 0, x(n∗1,T−1, δ) > 0, l · xn(n∗1,T−1, δ) − h · yn(n∗1,T−1, δ) < 0, h ·
yδ(n∗1,T−1, δ)− l · xδ(n∗1,T−1, δ) > 0, we finally have:

∂n∗1,T−1

∂h
< 0,

∂n∗1,T−1

∂l
> 0,

∂n∗1,T−1

∂δ
< 0.

The proof is completed using a simple recursive method.15

Case-1: n > n. V t−1
1 (n) = max{h(2µ(n)− 1); δν(n)V t

1 (n + 1) + δ(1− ν(n))V t
1 (n− 1)} and

Y t
1 (n) = max{0,−(1− δ)h(2µ(n)− 1) + δν(n)Y t+1

1 (n + 1) + δ(1− ν(n))Y t+1
1 (n− 1)}

Y t−1
1 (n) = max{0,−(1− δ)h(2µ(n)− 1) + δν(n)Y t

1 (n + 1) + δ(1− ν(n))Y t
1 (n− 1)}

Suppose that the following assumptions (A1)-(A5) hold.

(A1): Y t
1 (n) is non-increasing in n and there exists n∗∗1,t such that τ1,t = a if n > n∗∗1,t and

τ1,t = w if n ∈ [n, n∗∗1,t).

15For the reader unfamiliar with this method, the technique is very simple. Basically, we have already
proved that some properties (that will be labelled below as (A1)-(A5) or (A1’)-(A5’) depending on
whether n 6 n or n > n) hold at dates T and T − 1. The second step consists in assuming that these
properties hold at a given date t ∈ {1, ..., T−1}, that we leave unspecified. If, starting form this assumption,
we are able to prove that the properties also hold at t − 1, then we have proved that the properties hold
for all t ∈ {0, ..., T}.
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(A2): Y t
1 (n) > Y t+1

1 (n) and therefore n∗∗1,t > n∗∗1,t+1.
(A3): Y t

1 (n, h) 6 Y t
1 (n, h′) if h > h′ (and therefore ∂n∗∗1,t/∂h < 0).

(A4): Y t
1 (n, l) > Y t

1 (n, l′) if l > l′ (and therefore ∂n∗∗1,t/∂l > 0).
(A5): Y t

1 (n, δ) > Y t
1 (n, δ′) if δ > δ′ (and therefore ∂n∗∗1,t/∂δ > 0).

Given (A1), the r.h.s. of Y t−1
1 (n) is decreasing in n, so Y t−1

1 (n) is non-increasing in n.
Therefore, there exists a unique cutoff n∗∗1,t−1 such that for all n > n∗∗1,t−1 then τ1,t−1 = a,
and for all n ∈ [n, n∗∗1,t−1) then τ1,t−1 = w. Also, given (A2), the r.h.s. of Y t−1

1 (n) is
greater or equal than the r.h.s. of Y t

1 (n) and therefore Y t−1
1 (n) > Y t

1 (n). Overall, both
(A1) and (A2) hold at date t− 1. Furthermore, n∗∗1,t−1 > n∗∗1,t. Now, denote:

Y t−1
1 (n, h) = max{0,−(1− δ)h(2µ(n)− 1) + δν(n)Y t

1 (n + 1, h) + δ(1− ν(n))Y t
1 (n− 1, h)}

Y t−1
1 (n, h′) = max{0,−(1−δ)h′(2µ(n)−1)+δν(n)Y t

1 (n+1, h′)+δ(1−ν(n))Y t
1 (n−1, h′)}

By (A3), if h > h′ then Y t
1 (n + 1, h) 6 Y t

1 (n + 1, h′) and Y t
1 (n − 1, h) 6 Y t

1 (n − 1, h′).
Therefore, Y t−1

1 (n, h) 6 Y t−1
1 (n, h′). This means that (A3) holds at date t− 1 and, as a

consequence, that ∂n∗∗1,t−1/∂h < 0. Using a similar reasoning, it is immediate that (A4)
and (A5) also hold at t− 1 and therefore that ∂n∗∗1,t−1/∂l > 0 and ∂n∗∗1,t−1/∂δ > 0.

Case-2: n 6 n. V t−1
1 (n)=max{l(1− 2µ(n)); δν(n)V t

1 (n + 1) + δ(1− ν(n))V t
1 (n− 1)} and

W t
1(n) = max{0,−(1− δ)l(1− 2µ(n)) + δν(n)W t+1

1 (n + 1) + δ(1− ν(n))W t+1
1 (n−1)}

W t−1
1 (n) = max{0,−(1− δ)l(1− 2µ(n)) + δν(n)W t

1(n + 1) + δ(1− ν(n))W t
1(n− 1)}

Suppose that the following assumptions (A1’)-(A5’) hold.

(A1’): W t
1(n) is non-decreasing in n and there exists n∗1,t such that τ1,t = b if n < n∗1,t

and τ1,t = w if n ∈ (n∗1,t, n].
(A2’): W t

1(n) > W t+1
1 (n) and therefore n∗1,t < n∗1,t+1.

(A3’): W t
1(n, h) > W t

1(n, h′) if h > h′ (and therefore ∂n∗1,t/∂h < 0).
(A4’): W t

1(n, l) 6 W t
1(n, l′) if l > l′ (and therefore ∂n∗1,t/∂l > 0).

(A5’): W t
1(n, δ) > W t

1(n, δ′) if δ > δ′ (and therefore ∂n∗1,t/∂δ < 0).

Given (A1’), the r.h.s. of W t−1
1 (n) is increasing in n, so W t−1

1 (n) is non-decreasing in
n. Therefore, there exists a unique cutoff n∗1,t−1 such that for all n < n∗1,t−1 then τ1,t−1 = b,
and for all n ∈ (n∗1,t−1, n] then τ1,t−1 = w. Also, given (A2’), the r.h.s. of W t−1

1 (n) is
greater or equal than the r.h.s. of W t

1(n) and therefore W t−1
1 (n) > W t

1(n). Overall, both
(A1’) and (A2’) hold at date t− 1. Furthermore, n∗1,t−1 < n∗1,t. Now, denote:

W t−1
1 (n, h) = max{0,−(1− δ)l(1− 2µ(n))+ δν(n)W t

1(n+1, h)+ δ(1− ν(n))W t
1(n− 1, h)}

W t−1
1 (n, h′) = max{0,−(1−δ)l(1−2µ(n))+δν(n)W t

1(n+1, h′)+δ(1−ν(n))W t
1(n−1, h′)}
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By (A3’), if h > h′ then W t
1(n + 1, h) > W t

1(n + 1, h′) and W t
1(n− 1, h) > W t

1(n− 1, h′).
Therefore, W t−1

1 (n, h) > W t−1
1 (n, h′). This means that (A3’) holds at date t−1 and, as a

consequence, that ∂n∗1,t−1/∂h < 0. Using a similar reasoning, it is immediate that (A4’)
and (A5’) also hold at t− 1 and therefore that ∂n∗1,t−1/∂l > 0 and ∂n∗1,t−1/∂δ < 0.

Type-2 agent.

From equations (1) and (2), it is immediate to notice that type-1 and type-2 agents are
fully symmetric. Therefore, if at date t there exists n∗∗1,t s.t. τ1,t = a if n > n∗∗1,t and τ1,t = w

if n ∈ [n, n∗∗1,t), then there also exists n∗2,t s.t. τ2,t = b if n < n∗2,t and τ2,t = w if n ∈ (n∗2,t, n].
Furthermore, n∗2,t is such that n− n∗2,t = n∗∗1,t − n, that is µ(n∗∗1,t) = 1− µ(n∗2,t). Similarly,
if at date t there exists n∗1,t s.t. τ1,t = b if n < n∗1,t and τ1,t = w if n ∈ (n∗1,t, n], then there
also exists n∗∗2,t s.t. τ2,t = a if n > n∗∗2,t and τ2,t = w if n ∈ [n, n∗2,t). Furthermore, n∗∗2,t is
such that n∗∗2,t − n = n− n∗1,t, that is µ(n∗1,t) = 1− µ(n∗∗2,t).

Note that if h = l, then for all t we have µ(n∗1,t) = 1−µ(n∗∗1,t) and µ(n∗2,t) = 1−µ(n∗∗2,t).

As a result, n∗2,t = n∗1,t < n and n∗∗2,t = n∗∗1,t > n. Also, we know that
∂n∗∗1,t

∂h < 0 and
∂n∗1,t

∂h < 0

(which, again by symmetry, implies that
∂n∗2,t

∂h > 0 and
∂n∗∗2,t

∂h > 0). Therefore, for all h > l

we have n∗1,t < n∗2,t < n < n∗∗1,t < n∗∗2,t.

Summing up, when δ < 1, h > l > 0 and T → +∞, we have n∗1 < n∗2 < n < n∗∗1 < n∗∗2
where µ(n∗∗1 ) = 1−µ(n∗2) and µ(n∗1) = 1−µ(n∗∗2 ). Moreover, ∂n∗∗1

∂h < 0, ∂n∗∗1
∂l > 0, ∂n∗∗1

∂δ > 0,
∂n∗1
∂h < 0, ∂n∗1

∂l > 0, ∂n∗1
∂δ < 0 and ∂n∗2

∂h > 0, ∂n∗2
∂l < 0, ∂n∗2

∂δ < 0, ∂n∗∗2
∂h > 0, ∂n∗∗2

∂l < 0, ∂n∗∗2
∂δ > 0.
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