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Abstract

The standard model of utility maximization assumes that individuals make complete contingent plans

before making a decision. This paper shows that when the environment is sufficiently complex the optimal

rule entails learning by doing rather than contingent planning. An implication of this result is that spill-

overs from learning by doing are less than perfect, a hypothesis central to many models of learning by

doing, such as Rosen (1972). It is shown that one can derive learning curves that can be Þtted to data.

The model is also consistent with the observations of behavioral economics, such as Kahneman and

Tversky (1979), that in the short run individuals may make biased decisions, though long run behavior is

consistent with utility maximization. Finally, the model is applied to Becker (1968)�s deterrence model

to show that the optimal amount of monitoring is bounded away from zero.
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1 Introduction

Beginning with Knight (1921) and Simon (1955), there has been a great deal of work exploring the impli-

cations of human cognition for economic decision making.1 Despite many advances in our understanding

of human cognition, it is still the case that expected utility theory appears to be the best general model of

choice behavior (see for example Grether (1980), Harless and Camerer (1994) and Hey and Orme (1994)2).

The goal of this paper is to develop a simple, stylized model of decision making that begins to bridge the gap

between models based upon utility maximization and behavioral models, whose goal is to explain observed

deviations from rational choice.3 The main result demonstrates that when the number of events for which

an individual or organization must prepare a response is so large that complete contingent planning is im-

possible, then the optimal Bayesian decision rule is to acquire behavior via learning-by-doing. The resulting

model can be empirically implemented, and is calibrated to Þt some empirical learning data. It also provides

some new insights into the structure of optimal incentive rules, and can explain why large Þnes are not used

to economize upon monitoring costs, as predicted by Becker (1968).

The hypothesis of complete contingent planning is a central hypothesis in models of rational choice, such

as Savage (1972)�s theory of decision making under uncertainty. The important contribution of Savage�s

theory is to show how that it is possible to construct a theory of rational choice even when there are events

for which the objective probabilities are unknown. A central ingredient of this theory is that the decision

maker is able to consider every possible future event and can assign a probability to each of these events.

As Savage was well aware, both of these assumptions are quite strong.4 In practice individual planning

is necessarily incomplete, moreover, even if planning were complete, the subjective nature of probability

assessments weakens the predictive content of the theory.

In section 3 it is shown that when the environment is sufficiently complex (and hence contingent planning

is necessarily incomplete), and individuals have no prior information, then learning-by-doing is an optimal

Bayesian decision rule. Moreover, this rule has characteristics that correspond to the features of a generic

�cognitive� model of decision making.5 The essential idea is that when the environment is very complex,

then the most efficient way for an individual to plan is to wait and respond to events as they occur (an

idea that is implicit in Simon (1951)�s theory of the employment relationship). In a stationary environment

the events that are observed are more likely to occur again in the future, and hence it is optimal to acquire

optimal responses only to those events that occur, rather than attempt to make plans for all hypothetical

future events.

Arrow (1962) and Alchian (1963) have shown that learning by doing plays an important role in under-

standing both the nature of economic growth and the theory of the Þrm. An important feature of learning

1More recently Williamson (1975) has argued that understanding complexity is central to understanding the theory of

organization.
2These papers Þnd the even stronger result that simple expected value maximization is a good Þrst order model of behavior.
3 See Camerer (1995) for a recent review of this literature.
4 See Binmore (1992) for a further discussion of this point in the context of game theory.
5 See Churchland and Sejnowski (1993) for an excellent review.
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by doing is that the acquired skills and techniques are often difficult and costly to transfer to other Þrms or

individuals. Rosen (1972) uses this feature to construct a theory of the Þrm in which skills acquired through

experience form part of the marketable assets of the Þrm.6 The main result helps explain not only why learn-

ing by doing is optimal, but also why the spillovers are less than perfect. Acquiring the skill from another

Þrm is equivalent to contingent planning, that is one needs to learn the optimal response for many possible

contingencies, many of which may not be relevant for the organization or individual acquiring the skill. In

the extreme case it may simply be more efficient to acquire the skill via a process of learning-by-doing, rather

than attempt to buy the skills from others.

This result distinguishes the paper from Jovanovic and Nyarko (1995), who also use a decision theoretic

approach to explore the foundations of learning-by-doing. In their model it is assumed that there is an

unknown parameter that determines the optimal decision that can only be learned through costly experi-

mentation. For example, one may not know what is the correct amount of fertilizer to put on a Þeld, and

hence it may take several seasons of experimentation to discover the optimal rule. But once the rule has

been learned, it can be easily passed on to another person or individual. In their model it is the complexity

of the choice space, rather than the event space that makes it expensive to learn.

In section 4 the model is compared to Jovanovic and Nyarko�s results using their data. This data consists

of observations on performance as a function of experience, and for the most part corresponds to skill

acquisition: coronary anoplasty success, ßight control ability and sales performance data. It is found that

the model in this paper consistently Þts as well or better than the Jovanovic and Nyarko model, except

in the case of steel plant productivity. This result is consistent with the hypothesis that productivity in a

manufacturing plant depends upon knowledge of a technique rather than the ability to respond to a large

number of possible scenarios, and hence we should expect the Jovanovic-Nyarko model to do best in this

case.

The basic model assumes that the individual or organization acquires the appropriate behavior for a Þnite

number of events. However in practice, it is reasonable to suppose that stimulus comes from a continuum of

possible events. Cognitive scientists explain the human ability to learn appropriate behavior by supposing

individuals classify data into Þnite categories using sophisticated pattern recognition abilities. The precise

form that these pattern recognition routines take is a very difficult problem and an active area of research.

What is known is that under quite weak conditions a large class of pattern recognition algorithms result

in convergence to the optimal rule. In section 5 it is shown that one can incorporate a simple pattern

recognition procedure into the model, and, even with a continuum of events, learning-by-doing converges to

optimizing behavior.

This result provides a formal bridge between the literature in behavioral economics that focuses upon

the many observed deviations from rational choice, and the literature that Þnds that utility maximization

is the most useful general model for explaining observed economic institutions. For example, the classic

6 See also Lippman and Rumelt (1982) who develop a theory of industry dynamics under the hypothesis of imperfect ability

to imitate competitors.
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paper of Kahneman and Tversky (1979) documents a number of observed behavioral anomalies that can

be explained by cognitive mechanisms relying upon pattern recognition. More recent work by Rubinstein

(1988) and Leland (1994, 1998) have shown that some of the deviations from expected utility theory can

be explained by supposing individuals use explicit similarity functions in evaluating alternatives. Thus, the

use of pattern recognition in the short run can explain observed deviations from rational choice, and when

combined with learning-by-doing implies in optimizing behavior in the long run; a result that is consistent

with the evidence discussed by Grether (1980), Hey and Orme (1994) and Harless and Camerer (1994).

The penultimate section of the paper illustrates an application of the model to an optimal incentive

problem. Standard principal-agent models assume that both the principal and agent are able to anticipate

and plan for an agent�s response to an incentive system. In the context of deterrence, Becker (1968) has

shown that this implies that the cost of monitoring an activity can be made arbitrarily small by matching

a decrease in the probability of detection with an increase in the penalty. Not only do we not observe a

systematic application of this principle, but there is some evidence that the probability of detection has a

small impact on behavior ( Grogger (1991)).

The deterrence model is typically applied to illegal behavior, such as theft, speeding, tax evasion, etc.

Notice that these activities are complex in the sense of this paper. When deciding on one�s speed many

situations affect the choice, including where police are likely to be monitoring, traffic and road conditions,

and so forth. Increasing the probability of detection, increases the number of times an individual is caught,

and hence experiences the Þne. The theory of this paper suggests that behavior is more responsive to change

with experience, and hence increasing the probability of detection should increase the impact that Þnes have

on behavior. This observation is used to derive optimal level of monitoring for a simple model of deterrence.

The Þnal section of the paper contains some concluding comments.

2 An Example

Before proceeding to the general result, let us begin by considering a very simple example that illustrates

the role of learning by doing in decision making. Consider two individuals playing the game of tic-tac-toe:

they each take turns playing with one placing X�s while the other places O�s on a 3× 3 board, with the Þrst
person placing a line of three X�s or O�s in a row winning. We can deÞne payoffs by supposing the person

who loses pays the winner $10, with no money changing hands in the event of a draw.

Notice that even though the game requires a sequence of moves, each time a player moves her decision

corresponds to choosing how to play in response to a board position. The actual choice may depend upon

expectations of what will occur in the future, however formally a move is a function from the set of possible

board positions to the choice of where to place a O or X, a feature shared by many decision problems.
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Suppose that it is X�s turn to play and the current board looks like:

O X

X

O

.

Under the hypothesis that player X is �rational� she would choose the strategy that would ensure either a

draw or a win for X. Economic models typically do not inquiry into the process of how the agent makes such

a choice, rather it is simply assumed that an optimal choice is made, though there may be some unmodelled

error.

The purpose of this inquiry is to better understand both the source of error, and how behavior adjusts

to deal with past errors. For this board position consider the following two possible moves by X:

A :

O X X

X

O

or B :

O X

X

X O

.

In both cases, in order to avoid a loss, O must block the possible diagonal three in a row by X. However,

case A leads to a sure loss by X, while in case B, the outcome is a draw regardless of subsequent play (in

both cases I am assuming O makes the obvious blocking move against that X).

Anticipating these outcomes is not difficult, and in fact tic-tac-toe is simple enough to be completely

analyzed by hand (Nilsson (1998), page 199). However, despite this, if player X has little experience and is

required to move quickly, then a mistake may occur. The fact that children enjoy playing tic-tac-toe suggests

that mistakes occur, and sometime a player wins. This is more likely to be the case in situations, such as

this one, that require some foresight. Thus the second ingredient of the model is the hypothesis that when

individuals are required to decide under time pressure, mistakes will occur even though with more reßection

an optimal choice might be made.

This situation is reßected in day to day life where we simply do not have the time to weigh every decision

carefully, and hence mistakes are often made. Even though we do not have time to reßect and consider

the consequences of every decision, even under time stress we do make conscious choices, corresponding

to what the noted cognitive scientist, Allen Newell (1990) has called decisions in the cognitive time frame

(milli-seconds to minutes). These decisions depend upon very fast pattern recognition routines in which the

individual uses experiences from previous, similar, events to make a choice.7 In constrast, economic models

typically assume that decisions are taken in the so called rational time frame (minutes to hours), where the

individual has the time to consider and weigh many of the consequences that may arise from a choice.

Decision making in the cognitive time frame is however ubiquitous. For example Simon and Schaeffer

(1992) use a very elegant experiment to show that memorized responses, in addition to thought and planning,

7 See Churchland and Sejnowski (1993) for an review of how the mind carries out these pattern recongnition routines.
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is part of high level chess playing skill.8 Due to the high costs of exploring the game tree, high level chess

players learn to recognize a large number of positions as being either weak or strong, which then use to limit

the amount of search. Even in the context of tic-tac-toe pattern recognition proves useful. If the player were

rational in the sense of Savage, then she would construct a complete contingent plan at the beginning of

the game, where there are in principle 38, or 6561 possible board positions. Of course symmetry and other

considerations greatly reduce the number of positions to be considered, however it should be remembered

that working out such simpliÞcations itself requires sophisticated, time consuming reasoning.

Thus even in the case of tic-tac-toe, as in the game of chess, only a limited number of board positions

occur in practice, and hence through repeated play the individual can learn to respond to only those positions

that occur repeatedly. In the case of the example above one would very quickly learn to choose plays like

B where intuitively one can see that X is blocking the formation of three in a row by both O�s on the

board. In fact the game of tic-tac-toe is so simple that the game playing programs merely implement the

optimal strategy and do not use any reasoning at all. This approach is consistent with the approach of this

paper, which i assume that in many situations human behavior is not the result of a conscious weighing of

possibilities, but rather the result of implementing a learned response, which depending upon the context

may or may not be optimal.

One of the empirical implications of this model of decision making is that skills are costly to change. If

an individual has hardwired responses to a number of situations, then if the optimal response to the same

situation changes the individuals will initially make mistakes until the new optimal behavior is acquired. The

speed at which optimal behavior is acquired depends upon the complexity of the decision problem. We would

expect that decisions with levels of complexity similar to tic-tac-toe to approach optimality very quickly,

while some skills, such as chess playing, may take years to acquire. Other examples would include pilots who

are taught how to respond appropriately and automatically when an emergency occurs, or surgeons who

plan in advance how to carry out a surgical proceedure, and have in place contingent plans should certain

emergencies occur. With experience these professionals learn how to respond to contingences they did not

anticipate that occur during the exercise of their craft.

In summary, our model begins with the observation that with time constraints individuals may make

errors, even if the underlying problem is very simple. Secondly, when the number of possible events is very

large, then contingent planning may not be possible, and it may be more efficient to learn optimal responses

to those events that occur in practice. One reason I began with the example of tic-tac-toe is to illustrate

that these problems can arise even when perfect planning is in principle possible. Savage�s theory predicts

that individual would use complete contingent planning, however in many situations, such as tic-tac-toe, it

may be more efficient to acquire the skill through experience. We would certainly expect most adults to play

tic-tac-toe well after only of few minutes of play, even though a complete analysis of the game might take a

8They compared the ability of novices and experts to remember both legal and illegal board positions. They found that

both groups were equally good at remembering a random board position, but the experts could perfectly recall board positions

corresponding to actually outcomes of a chess game.
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matter of hours.

The Þnal ingredient of the model is based upon the fact that humans are designed to respond quickly and

reliably to patterns, and hence individuals can acquire and implement optimal behavior as a reßex response

rather than as reasoned consideration. This basic structure is illustrated in Þgure 1, and developed formally

in the following section.

3 A Model of Optimal Decision Making in a Complex Environ-

ment

Consider a situation in which an agent at time t is expected to respond with a decision dt ∈ D in response

to an event ωt ∈ Ω, where Ω is a Þnite set of events. Without loss of generality the decision set is restricted
to a binary choice: D = {0, 1} . In addition, it is assumed that the events are selected by an i.i.d. stochastic
process, where µ (ω) is the probability that ω is chosen in period t. The decision maker does not know this

distribution, but updates beliefs over the set of possible prior distributions as events are observed. Suppose

that the incentive contract governing the agent�s reward yields a utility U (d|ω) if decision d is chosen when
event ω occurs. Throughout, it is assumed that U (1|ω) 6= U (0|ω) , hence for each event ω there is a unique
optimal choice given by σ∗ (ω) = argmaxd∈D U (d|ω) .
It is assumed that the decision is sufficiently complex that there is not sufficient time between the

observation of ω and the choice d for individuals to consistently choose the optimal strategy. However,

before facing the event the individual may prepare a response either through an explicit contingent contract

or by training with different possible events before the time of decision. For example, airline pilots train in

ßight simulators to prepare responses for various possible aircraft failures. Even if the pilot is capable of

deducing the appropriate response for a particular failure, he or she may not have sufficient time to carry

out such an analysis. Indeed, the point of pilot training is to ensure that the appropriate decision is taken

quickly with little apparent thought.

The recent research in cognitive psychology, as described in Churchland and Sejnowski (1993), shows that

the brain is designed to retrieve responses to learned experiences very quickly and reliably. Let us consider

a highly stylized learning model based upon this idea that explicitly relates an optimal Bayesian decision

making model to a cognitive model of decision making. At time t let Ωt ⊂ Ω denote the set of events for
which the individual has a prepared response. This implies that if ωt ∈ Ωt occurs then the individual is
able to respond optimally with σ∗ (ωt) ∈ {0, 1} . If ωt /∈ Ωt, then the individual does not have a prepared
response, nor does she have sufficient time to determine the appropriate response and hence she randomizes

over D. For simplicity suppose that when the optimal response is made the reward is ug, while if a plan is

not in place for an event the expected payoff is ub < ug. The behavior of an individual at time t is given by

7



the function:

σt (ωt) =

(
σ∗ (ωt) , if ωt ∈ Ωt.©
1
2 ,

1
2

ª
ifωt /∈ Ωt.

,

where
©
1
2 ,

1
2

ª
denotes the lottery that selects each action in {0, 1} with equal probability.

Events are added to the set Ωt in two ways. First there is learning by doing, if ωt occurs then the agent

evaluates her performance ex post, and encodes an optimal response to the event ωt, which is added to

the set Ωt. The second method is through the explicit formation of a contingent plan. The individual can

expend effort before the realization of ωt to add additional events to the set Ωt. This is assumed to be a

costly activity, either because acquiring the behavior requires expensive training, or simply because of the

cost associated with adding a large number of contingent plans. The goal is to explicitly model the trade-off

between learning by doing and the formation of a contingent plan ex ante.

It is assumed that the individual knows that the events in Ω are generated by some unknown stationary

distribution µ ∈ ∆N . To simplify the computation of posterior beliefs, let the prior beliefs be given by a
Dirichlet distribution, f (x|α) , where α = {α1, ...,αN} . The parameter αi represents the weight associated
with the event ωi.9 Dirichlet distributions form a set of conjugate priors for the set of measures in ∆N . If

event ωi is observed in period t, then the updated beliefs of the individual is given by a Dirichlet distribution

with parameters αtj = αt−1j if j 6= i and αti = αt−1i + 1, where αt−1i is the period t belief parameter. The

expected value of the probability that event ωi occurs given a Dirichlet distribution with parameter α is
αiP
αj
. Initially the individual does not have any information over which event is more likely and therefore let

α0 = {b, ...b} . The parameter b represents the intensity of an individual�s beliefs. When b is very large, then
the individual believes that the true distribution is close to uniform, and will update beliefs very slowly. In

contrast when b is close to zero, then even after one period, the individual believes that the probability of

Ωt is close to one.

The construction of a contingent plan is assumed to be an increasing function of the number of states.

Hence planning may be spread over several periods. SpeciÞcally between periods t and t+ 1, the individual

may decide to make contingent plans for an additional nt events in Ω\ {Ωt ∪ {ωt}} , (it is assumed that the
event that occurs in period t is always added to Ωt). The cost of this additional contingent planning is

c (nt) , where c (0) = 0, c0, c00 > 0. Let the marginal cost of going from nt − 1 to nt be given by mc (nt) =
c (nt) − c (nt − 1) . The individual chooses the amount of planning in period t to maximize her discounted
expected payoff given her beliefs. The beneÞt from adding a plan for event ω arises from a net gain of ug−ub
that accrues only the Þrst time ωt is observed. This gain is traded off against the probability of that event

not occurring in the future.

9For µ ∈ ∆N then:

f (µ|α) = Γ (a1 + ...+ αN )

Γ (a1) ...Γ (αN )
µα1−11 ...µ

αN−1
N .

If αi goes to ∞ while the other parameters remain Þxed then this distibution approaches the measure that place probabilty 1

on the i0th event.
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Events that are not in Ωt ∪ {ωt} have never occurred in the past, and hence the expected probability
that such an event occurs in period t + 1 is b

bN+t . Then the probability that the Þrst time an event occurs

is in period T, given that it has not occurred before then is:

π (t, T, b,N) =

µ
1− b

bN + t

¶µ
1− b

bN + t+ 1

¶
...

µ
1− b

bN + T − 2
¶

b

bN + T − 1 .

Notice that due to the Bayesian updating, for any event that has not been observed, the probability that such

an event will occur decreases with time. Also notice that this probability does not depend upon the events

that have occurred since we have assumed that the distribution is an i.i.d. process. Using this expression

the marginal beneÞt from adding an event to the set Ωt that has not been observed in the past is given by:

mb (t, b,N) = (ug − ub)
∞X
n=0

π (t, t+ n, b,N) δn.

The optimal amount of planning in period t, �nt, entails adding states to Ωt, as long as the marginal beneÞt

is greater than the marginal cost and hence solves:

mc(�nt + 1) ≥mb (t, b,N) ≥mc(�nt)

It is immediate that the amount of planning increases with the net beneÞt (ug − ub) . The following propo-
sition follows from this expression.

Proposition 1 The optimal level of planning, �nt, has the following properties:

1. �nt ≥ �nt+1, and if b <∞ there is a T such that �nt = 0 for t ≥ T.

2. �nt is increasing with b.

3. If N > (ug − ub) /mc (1) , then for b sufficiently close to zero �nt = 0 for all t.

4. When (ug − ub) /mc (1) > 1 and N ≥
³
(ug−ub)
mc(1) − δ

´
/ (1− δ) then �nt = 0 for all t.

Proof. Let c = mc (1) > 0 be the marginal cost of planning for a single state. Notice that

limt→∞ π (t, t+ 1, b,N) = 0, and π (t, t+ n, b,N) > π (t, t+ n+ 1, b,N) , hence it follows that

limt→∞mb (t, b,N) = 0, and hence for large enough c, mb (t, b,N) < c, from which statement 1 follows.

For any T > t, π (t, T + 1, b,N) = π (t, T, b,N)
³
b(N−1)+T−1

bN+T

´
, from which one can show recursively that

∂π (t, T, b,N) /∂b > 0 for T > t, and hence the marginal beneÞt is an increasing function of b from which

statement 2 follows

As b approaches zero this corresponds to the agent placing almost all probability mass on Ωt for t ≥ 1.
Thus the only beneÞt from planning occurs in period 0, before any observations have been made. In that

case the marginal beneÞt is (ug − ub) /N + ε (b) , where limb→0 ε (b) = 0, hence if N > (ug − ub) /mc (1) the
parameter b can be chosen sufficiently small that no planning takes place, which combined with 1 implies 3.
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Given that the level of planning is increasing with b, then to obtain a global bound on N, let b →
∞. In that case no learning occurs, and π (t, T, b,N) = (1− 1/N)T−t−1 /N, from which one concludes

that mb (t,∞, N) = (ug − ub) / (1− (1− 1/N) δ) > (ug − ub) /mc (1) , when (ug − ub) /mc (1) > 1. The

conclusion of statement 4 is immediate.

The Þrst result is that the amount of planning or training decreases with time. This is consistent with

our intuition regarding the acquisition of any skill. At the beginning it requires a great deal of thought and

practice, but over time individuals are able to perform automatically, though performance quality is always

increasing with time. Secondly, increasing b corresponds to decreasing the importance of learning, hence

makes planning relatively more beneÞcial than learning by doing. In other words contingent planning is

more important when uncertainty decreases, and the environment is more predictable.

The last two results show that when the number of possible events is very large, then it is optimal to

learn only by doing. For these conditions to hold one must suppose that the event space is very large, an

assumption that in many situations is quite reasonable. For example, suppose that a person make stock

trades as a function of the pattern of past price increases and decreases. After k periods there are 2k such

patterns, a number that grows very quickly with k. Suppose that the individual spends a second considering

each pattern, then the following table outlines the amount of time needed to explore all patterns possible

after k periods:

k Time to examine all patterns:

10 periods 17 minutes

20 periods 12 days

40 periods 349 centuries

.

This example is typical of many day to day decision problems. An implication of this result, that we

exploit in the empirical implementation of the problem, is that the learning rule is belief independent. A

difficulty with theories of decision making under uncertainty, such as Savage (1972)�s, is not only do they

presuppose an unrealistic amount of planning, but they also suppose that an individual makes decisions

based upon some unspeciÞed prior distribution, implying a certain amount of indeterminacy. This model

illustrates that when uncertainty is sufficiently large, then one can form predictions regarding behavior that

depend only upon the observable features of the decision problem.

Simon (1955) and Day (1967) have shown that under the appropriate conditions learning via simple

�satisÞcing� behavior can lead to an optimal choice. Here it is shown that regardless of the level of planning,

learning ensures convergence to the optimum:

Proposition 2 Regardless of the planning rule, behavior converges to the optimum:

lim
t→∞Pr {σt (ωt) = σ

∗ (ωt)} = 1.

Proof. Pr {σt (ωt) = σ∗ (ωt)} = (1− Pr {ωt /∈ Ωt}) + Pr {ωt /∈ Ωt} /2
> 1−Pr {ωt has not occured previously given µ} > 1−(1− ε)t−1, where ε = min {µ (ω) |ω ∈ support µ} >

0, since Ω is Þnite. The conclusion of the proposition immediately follows.
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Finally, notice that this model can explain why skills are expensive to transfer. In this model there is no

asymmetric information, rather all that is assumed is the existence of a small cost for encoding behavior for

every possible event in Ω. This cost could also be the cost of acquiring the behavior for a particular event

from another individual or Þrm. When the number of possible events are sufficiently large the individual

will choose not to learn from another individual or Þrm, but rather the individual chooses to learn by doing.

With this interpretation the amount of planning, nt, corresponds to those responses that are acquired from

another person or organization, and hence can be viewed as the level of spillovers from one individual to

another. The fact that in some cases nt is less than the number of possible events implies that the level of

spillover is both endogenous and less than 100%.

4 Learning Dynamics

The purpose of this section is to illustrate an empirical implementation of the simplest version of the model.

Suppose that it is optimal to use only learning by doing, and that the N events are generated by a uniform,

and hence the probability of any given event is 1/N. As before suppose that for each event, the gain from

making a contingent plan is ∆ = ug−ub. Under these assumptions, a sufficient statistic for the performance
of a decision maker at the beginning of date t is given by the number of situations that have been experienced,

denoted by mt ∈ {0, 1, .., N} .
Learning can then be modelled as a Markov chain, where the state transition is given by the following

rule:

mt+1 =

(
mt, if ωt ∈ Ωt.
mt + 1 if not.

The probability of previously unexperienced event occurring is 1 −mt/N, hence the probability transition

matrix from state i to state j for the Markov process is the following (N + 1)× (N + 1) matrix:

Pij =


i/N, if j = i, i 6= 0,
1− i/N, if j = i+ 1,

0, in all other cases.

(1)

If the decision maker is in state m, then the expected payoff is �um = ug · m/N + ub (1−m/N) . Let

�U =


�u0
...

�uN

 be the N + 1 dimensional vector giving the expected payoff in each state. If decision maker

begins with no experience, then the initial state is x0 = {1, 0, .., 0}> . The evolution of the expected payoff
at time t, is given by the following dynamic process:

Vt (ug, ub, N) = x
>
0 P

t �U. (2)
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The matrix P is upper diagonal, thus the eigenvalues of the matrix are the diagonal elements and are given

by λi = i/N, i = {0, 1, .., N}. And hence we may write formula (2) in terms of powers of the eigenvalues, or:

Vt =
NX
i=1

αie
t lnλi . (3)

This formula describes an individual whose performance increases greatly at the beginning, and ap-

proaches Ug in the limit. As Newell and Rosenbloom (1981) observe, this rule approximates a log-linear

learning rule for the initial period of learning (see also the work of Alchian (1963) who also identiÞed a

log-linear learning rule for production costs). More surprisingly, equation (3) has the same functional form

as the learning curve that Newell and Rosenbloom (1981) use for a more precise Þt with the data.

Following the lead of Jovanovic and Nyarko (1995) this simple three parameter learning model (parame-

ters: ug, ub, N) is estimated using the data sets described in Jovanovic and Nyarko (1995). The purpose of

this exercise is mainly description, and not intended to be a careful empirical test of the theory. Thus the

parameters are estimated to minimize the squared error between the model and the data:

min
ug,ub,N

TX
t=1

(vt − Vt (ug, ub, N))2 ,

where vt is observed performance in period t.

Jovanovic and Nyarko also use a three parameter model, and hence it is reasonable to compare the Þt

between the two models. We present the results in four of the cases (the ones with a larger number of data

points). The results for the other data sets discussed by Jovanovic and Nyarko (1995) are similar. Each data

set records the average performance or productivity as a function of the number of trials or experience.

Data Sets:

� Anoplasty: The productivity is the probability of success for a group of doctors having the same level
of experience as measured by the number of operations.

� Flight Control Experiment: Number of successful plane landings on a ßight simulator as a function of
the number of trials. In this, and the subsequent data sets, we follow Jovanovic and Nyarko (1995)

and normalize the maximum performance to one.

� Insurance Sales: Relative sales performance averaged over three month periods.

� Steel Plant: Relative monthly productivity for a newly installed steel-Þnishing production line over the
Þrst two years of operation.

The data, the Þtted curves, and estimated parameters are illustrated in Þgures 2-5. It is interesting to

note, that only in the anoplasty data set we Þnd that complexity, as measured by N, is very large. The value

of N cannot be literally related to the complexity of the task, though high N does imply that performance

increases more slowly. In table 1 the R2 statistics for the two models are reported. In the case of the

12



Data Set R2 Jovanovic-Nyarko Model R2 Cognitive Model

Angioplasty 0.31 0.85

Flight Control Experiment 0.93 0.99

Insurance Sales 0.56 0.64

Steel Plant 0.74 0.74

Table 1: R-squared Þt for Learning Curves

Jovanovic-Nyarko model, the results for the three parameter model are reported. Their four parameter

model not surprisingly Þts much better.

Given that neither of these models are literally true, these results do not prove that either model is

the �true� model. Rather, it demonstrates that a very parsimonious model based upon learning when

an individual faces a large number of possible events does a good job of Þtting this data. Even though

human cognition is very complex, these results illustrate one way of using the cognitive model to produce

an empirically implementable learning model.

5 Pattern Recognition and Learning by Doing

The learning model described in the previous section makes the extreme assumption that all events that

have not been experienced yield the same payoff, and once experienced, result in a discrete increase in payoff

when responding to the event again in the future. A key ingredient of this model is the use of a Þnite state

space, though it may be more natural to view the environment as a continuum where data is complex and

multi-dimensional. One way the brain deals with complex stimuli is to categorizing data, and search for

similarities among events. Even if an event is new, if it is very similar to one that has been experienced

in the past, then the optimal response is likely to be close to the optimal response derived for a previously

experienced similar event.

Beginning with Kahneman and Tversky (1979), there have been a number of contributions showing how

the use of similarity judgements can help explain observed decision making. For example Rubinstein (1988),

Leland (1998) and Leland (1994) show that the use of similarity judgements can help explain some aspects of

observed behavior in the face of risk. Gilboa and Schmeidler (1995) extend this work to provide an axiomatic

foundation for the theory of decision based upon similarity judgements using the case based reasoning model

from the artiÞcial intelligence literature. These contributions do not study the impact of repeated experience

upon behavior guided by pattern recognition, the question that is addressed in this section.

Suppose that the event space is a compact, convex subset of <d, for some d ≥ 1, and suppose that {ωt}∞t=1
is an i.i.d. process represented by a measure µ on <d that is absolutely continuous with Lebesgue measure.
Further suppose that the space of decision is given by Z = {0, 1}n , for some n ≥ 1, and that an individual�s
utility function is U (z|ωt) . The only condition that we place upon preferences is that the optimal choice,

13



σ∗ (ωt) = argmaxz∈Z U (z|ωt) , exists and is Borel measurable.
Let us suppose that an individual acquires behavior only through learning by doing. The problem now

is since µ has no mass point, the probability that an individual sees the same event again is zero. Instead,

suppose that each period the individual observes ωt, and then Þnds the event that occurred in the past that

is most similar to ωt, say ωt
0
, and then chooses the decision that is associated with the event ωt

0
. As in the

previous section, it is assumed that after a decision is made the individual has sufficient time to contemplate

her response, and to associate with the experienced event ω the optimal response σ∗ (ω) . Hence, the decision

zt at time t is the optimal response to the most similar previous event ωt
0
, that is zt = σ∗

³
ωt

0
´
.

Our concern here is not with the optimal similarity measure (a difficult open question), but rather

to illustrate how the use of a very simple similarity measure can nevertheless result in optimal behav-

ior in the long run. Given a history of events and corresponding optimal responses at time t, Ht =©¡
ω1, z1

¢
,
¡
ω2, z2

¢
, . . . ,

¡
ωt−1, zt−1

¢ª
, and given a new event ωt, suppose the individual uses the response

for the previously experience event that minimizes the Euclidean distance, kωτ − ωtk , for τ = 1, 2, ..., t− 1.
In that case the individual�s behavior is given by the function:

σ
¡
ωt|Ht

¢ ∈
 zτ = σ∗ (ωτ ) | kωτ − ωk ≤

°°°ωτ 0 − ω°°° ,
∀τ , τ 0 ∈ {1, . . . , t− 1} , (ωτ , zτ ) ∈ Ht

 . (4)

Given this rule, we have the following proposition:

Proposition 3 Suppose that Ω is a compact subset of <d, the optimal behavior, σ∗ (ω) , is Borel measurable,
and µ is absolutely continuous with respect to Lesbesgue measure. Then

lim
t→∞E

©°°σ∗ ¡ωt¢− σ ¡ωt|Ht
¢°°ª = 0, (5)

where Ht = {(ω1,σ (ω1, T )) , (ω2,σ (ω2, T )) , . . . , (ωt−1,σ (ωt−1, T ))}.

Proof. Let gtn (ω) = |σ∗n (ωt) − hn (ωt|Ht) |/2, where n denotes the n0th coordinate. The optimal
response is deterministic, and hence there exists a function f such that E {kσ∗ (ωt)− f (ωt)k} = 0 (the

general theory of pattern recognition allows the optimal choice to be random). The rule used here is called

a nearest neighbor classiÞer, and from Devroye (1981) it follows that

lim
t→∞Pr

©
gtn
¡
ωt
¢ 6= 1ª = 0. (6)

By the Cauchy Schwarz inequality:

E
©°°σ∗ ¡ωt¢− σ ¡ωt|Ht

¢°°ª ≤
vuutE( NX

i=1

(σ∗i (ωt)− σi (ωt|Ht))2
)

(7)

≤ 2

vuut NX
n=1

Pr {gtn (ωt) 6= 1}. (8)
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from which the result follows.

Given that any compact state space can be approximated by a Þnite partition, this result can be extended

to show formally that the discrete model of the previous section can approximate the optimal decision rule

for a continuum. Though this result uses a very simple form of pattern recognition, namely the Euclidean

distance between two events, it can be extended to include large classes of other similarity measures (see

Devroye, GyörÞ, and Lugosi (1996)). What the result demonstrates is that even if short run behavior is

guided by the use of pattern recognition (as is suggested by the framing anomalies identiÞed by Kahneman

and Tversky (1979)), long run behavior should still conform to the hypothesis of utility maximization.

This convergence result also distinguishes this paper from the case based decision theory of Gilboa

and Schmeidler (1995). They elucidate the logic structure of a cognitive approach by axiomatizing case

based decision theory. However, their model does not in general imply the convergence of behavior to

utility maximization, and hence does not address the issue of why utility maximization is a good Þrst

order approximation to observed behavior.10 Moreover, while the goal here has been the construction of an

empirically implementable model, Gilboa and Schmeidler emphasize that the purpose of their theory is to

provide an alternative language for the description of decision making under uncertainty.

6 Incentives and the Probability of Detection

The principal-agent model assumes that both the principal and agent are able to anticipate and plan for

the consequences of any incentive system. In particular, for a Þxed incentive system, an agent�s behavior

should be time invariant. However the learning by doing model suggests that in complex environments such

behavior may change over time as the individual learns how to better respond to the incentives created by

the principal. The purpose of this section is to illustrate an application of the learning by doing to the

problem of optimal deterrence.

Becker (1968) has shown that one can arbitrarily lower the cost of ensuring compliance to certain stan-

dards of behavior by simultaneously lowering the probability of detection and increasing the Þne associated

with any observed transgressions of the performance standard. This result explicitly depends upon the hy-

pothesis that individuals understand the system of deterrence, and rationally avoid offending the standard

of behavior due to the high expected cost of non-compliance. This result has been quite controversial. First,

there is the puzzle of why we do not observe more examples of harsh penalties combined with low probability

of detection? Secondly, there is some evidence suggesting that individuals may not carry out a one for one

trade-off between increased Þnes and lower probability of detection. Grogger (1991) has found in a study

of California offenders that increasing the probability of detection increases deterrence, but the severity of

punishment has a small or insigniÞcant effect.

The learning by doing model provides a solution to both of these questions. In practice, for a wide range

of activities, from theft to speeding, we observe regular violation of the accepted standards of behavior. In

10 See the example on page 624.
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the context of learning by doing, the probability of detection controls the number of times an individual

offended has to pay a Þne or face punishment. The model explicitly assumes that in the absence of experience

the individual may not in fact respond optimally to the incentive system, but converges to optimal behavior

with experience.

This hypothesis is sensible only if the behavior that is being regulated is complex in the sense discussed

above. There is evidence that even simple offenses, such as shoplifting, involve potentially complex skills.

Weaver and Carroll (1985) study the strategies used by novice and experienced shoplifters, and Þnd that the

experienced shoplifter reacts to a variety of problems that arise, such as the location of security cameras,

the location of the goods, the nature of the exit from the store, etc. These are parameters that vary from

store to store, and hence skilled shoplifting entails reacting to a large number of possible situations.

Weaver and Carroll also Þnd that novice shoplifters tend to misperceive the risks, and are often motivated

by other factors than the physical difficulty of carrying out the act. In any situation where there is proba-

bilistic monitoring of performance, there is a potential for individuals to learn about the effectiveness of the

system, and to respond strategically. In this section I consider a reduced form model of these phenomena,

consistent with the learning model described above, in which individual behavior is more optimal as the

agent acquires more experience with being detected. In other words increasing the probability of detection,

increases the number of times that an individual is actually caught at an act, and hence increases the speed

of learning.

Before considering the effect of learning by doing on incentives, Þrst consider a simple model illustrating

Becker�s original result. Suppose that there is a principal who sets the level of detection and Þne for agent

to maximize social welfare. The agent selects a level of activity λ ∈ [0, 1] corresponding to the probability
that she obtains a beneÞt B. The personal cost of this activity is V (λ) , where V (0) = 0, V 0 > 0, V 00 > 0

and limλ→1 V
0 (λ) =∞. In the legal context this activity might correspond to speeding, trespass, theft etc.,

while in an employment context it might correspond to the level of care taken in an activity, whose intensity

may lead to accidents. In the absence of any incentive system the agent selects λ to solve B = V 0
³
λA
´
.

From the principal�s perspective when even the agent receives B, there is a social cost S, and hence the

activity entails an expected social cost λS. Therefore the Þrst best activity level satisÞes:

B − S = V 0 (λ∗) .

Clearly λA > λ∗, and thus the principal wishes the agent to reduce her activity level. This can be

achieved with a monitoring system that has a probability of detection ρ ∈ [0, 1] and the level of Þne F ≥ 0
that are imposed whenever the principal observe the agent receiving B. In this case the utility of the agent

is given by:

UA = λB − ρλF − V (λ) .

Let the cost of monitoring be given by C (ρ) , where ρ ∈ [ρ̄, 1] , ρ̄ > 0, and C0 > 0, C 00 > 0, C (ρ̄) = k > 0.
The Þxed k corresponds to setting up a monitoring system with a minimum level of detection ρ̄. The net
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payoff to the principal is UP = −λS + ρλF −C (ρ) . Let the social welfare before monitoring costs be given
by U (λ) = λ (B − S) − V (λ) . In the standard principal agent model it is assumed that the agent chooses
the optimal λ given the parameters ρ and F. Assuming that the parameters are chosen to maximize social

welfare, the principal solves:11

max
ρ,F,λ

UA + UP = max
ρ,F,λ

U (λ)−C (ρ) ,
subject to B − ρF = −V 0 (λ) .

It is straightforward to see that the solution to this problem when k is sufficiently small is:

0 = U 0 (λ∗) = B − S − V 0 (λ∗) ,
ρ∗ = ρ̄,

F ∗ = S/ρ̄.

In other words the level of care is set to the Þrst best λ∗, while the probability of detection is set at the

lowest possible level. In the absence of a bound on ρ, one obtains Becker�s result in which the probability of

detection is set arbitrarily close to zero, while the Þne would be arbitrarily large.

To explore the implications of learning by doing for incentives, consider a simple overlapping generations

model with a continuum of agents, normalized to one per generation, that live for two periods. Experience

when they are young affects their behavior when old. In practice individuals can either learn to be more

cautious because they have been Þned, or they may become less cautious because they are not Þned even

though they may have offended. Thus suppose that there are two groups of individuals.

Each period a fraction γ of the young generation are �socially conscious� (or viewed as the novice

shoplifters as in Weaver and Carroll (1985), and hence have no intention to offend) and who begin by

choosing the socially optimal rule, λ = λ∗.12 A fraction 1− γ of the agents initially ignore the consequences
of their actions upon the probability of a Þne, and choose λ = λ̄ to solve B = V 0

¡
λ̄
¢
, where λ̄ > λ∗.

The parameter γ is assumed to remain Þxed with time, and can be interpreted as representing different

background and education levels of the young.

Under the assumption of no discounting, the principal chooses the level of monitoring and the Þne to

maximize expected welfare subject to the behavior of the agents. With probability λ the socially conscious

agents cause an offence that if detected would be Þned. If such an event does not occur, then they continue

to choose λ when old. Similarly, if they offend and are caught they also choose λ when old. However, if

11One could assume that the principal maximizes UP subject to the agent getting at least ŪA, but given the assumption of

transferrable utility, we would get the same answer. The current setup is more convenient, and also the interpretation as a

benevolent principal/government setting the optimal deterrence parameters.
12 It may seem strange to suppose that it is efficient to have a positive probability of shoplifting. However, there are cases

where this might occur. For example a toddler may put a candy in the stroller at a store, which the parent does not notice

until he or she is at home. If it is a long drive back to the store, many law abiding individuals would decide it is not worthwhile

to return to the store.
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they offend and are not caught, then they �learn� that they can get away with offending, and choose λ̄ when

old. Recalling that we have deÞned U (λ) = λ (B − S) ρ − V (λ) , then the social return from the socially

conscious group is:

WSC = U (λ
∗) + (1− ρ)λ∗U ¡λ̄¢+ (1− λ∗ + ρλ∗)U (λ∗) .

In the case of the group that initially ignored the Þne in making their choice, suppose that they choose

the socially optimal level of the activity if and only if they offend and are caught. Hence the social welfare

from this group is:

WO = U
¡
λ̄
¢
+ ρλ̄U (λ∗) +

¡
1− ρλ̄¢U ¡λ̄¢ .

Hence the program solved by the principal is given by:

max
ρ,F,λ̄,λ

γWSC + (1− γ)WO (9)

subject to :

B − ρF = V 0 (λ)
B = V 0

¡
λ̄
¢

Notice that the Þne F does not appear in the objective function (due to the assumption of transferrable

utility), and hence the Þrst incentive constraint is not binding. The second incentive constraint completely

determines λ̄. Hence λ and ρ are chosen to maximize the payoff, while the Þne is Þxed by the Þrst incentive

constraint.13 The solution to (9) is summarized in the following proposition.

Proposition 4 The optimal incentive rule with learning is characterized by:

U 0 (λs) =

·
γ (1− ρ)

γ (2− (1− ρ)λ∗) + (1− γ) ρλ̄
¸ ¡
U (λs)− U ¡λ̄¢¢ , (10)

C0 (ρ) =
¡
γλs + (1− γ) λ̄¢ ¡U (λs)− U ¡λ̄¢¢ , (11)

V 0
¡
λ̄
¢
= B, (12)

F = (B − V 0 (λs)) /ρ. (13)

This proposition follows from a straightforward computation of the program (9). Notice that at the

optimum U 0 (λs) > 0, and since U (λ) is concave it follows that λs < λ∗ < λ̄, and the level of care among

those individuals who are responding to incentives is greater than in the case of no learning by doing. The

reason for this effect is that a higher λs increases the chance that a socially conscious person learns the

beneÞts of offending, and hence there is a return to lowering λs to lower than the Þrst best under complete

information. Secondly, a straightforward comparative statics exercise shows that increasing the fraction of

socially conscious individuals, γ, decreases λs and increases the level of monitoring ρ.
13 If one assumes that the government uses funds less efficiently than private agents, then the size of F would enter the

objective function. Extending the model to deal with this case is straightforward.
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Intuitively, one might expect that increasing the number of individuals who have a propensity to conform

would decrease the level of monitoring and the level of expected performance, when in fact the opposite

occurs. This follows from the fact that individuals who have a propensity to conform need to be monitored

in the event of an offence to reduce the chance that they increase their offence level in the future.

7 Concluding Discussion

There is a large and growing literature documenting the fact that individual behavior is often inconsistent

with the utility maximization hypothesis. This paper begins by identifying situations where such behavior

is a natural consequence of the complexity of the environment, namely situations where individuals must

formulate responses to a large number of possible events, a problem that is central to cognitive models of

decision making. The economics literature on bounded rationality has also emphasized the role of complexity

in explaining observed behavior, however it has focused for the most part upon complexity of solving a

particular problem.

For example, Simon (1978), in his Ely Lecture to the American Economics Association, suggests that

bounded rationality arises from the difficulty of making an optimal choice, in other words focuses upon the

complexity of the decision space. More recently, Rubinstein (1998)�s review of models of bounded rationality

also takes the complexity of the decision as a starting point for understanding boundedly rational choice. In

this paper I have explicitly assumed that for a particular situation, the decision problem is relatively simple,

and have focused instead upon complexity that arises because an individual cannot formulate responses to

the large number of contingent events that she may face. This new perspective has a number of useful

economic implications.

The main result of the paper shows that when the event space is sufficiently large, then a Bayesian

decision maker may optimally choose to make decisions via learning by doing, rather than through the

formulation of contingent plans, as is usually assumed.14 One implication of this result is that observed

behavior is independent of prior beliefs. In Savage (1972)�s model individual behavior can be very sensitive

to subjective beliefs over the uncertain states, information that is not likely to be observable, and hence

reducing the empirical content of theory. In contrast, this model predicts the use of learning by doing when

uncertainty (complexity) is very large, something that is potentially observable, and hence the model may

be more amenable to empirical implementation.

In this paper the usefulness of the model is illustrated with three applications: the parameterization of

empirical learning curves, explaining why utility maximization, despite many observed anomalies, is a useful

Þrst order model, and Þnally explaining why we do not observe contracts that entail large Þnes combined

with low rates of monitoring. The common thread in each of these examples is that the quality of individual

decision making is a function of the complexity of a decision, as measured by the number of contingencies

14The observation that cognitive behavior is optimal is not new. For example the psychologists Payne, Bettman, and Johnson

(1993) explicitly make this point, though they do not have any formal proof of the observation.
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to which an individual must respond, a potentially observable quantity.
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Learning Curve for Angioplasty
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Learning Curve for Flight Control Experiment
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Learning Curve for Insurance Sales
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Learning Curve for a Steel Plant
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