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a  b  s  t  r  a  c  t

Priest  and Klein’s  1984  article,  “The  Selection  of Disputes  for Litigation,”  famously  hypothesized  a
“tendency  toward  50 percent  plaintiff  victories”  among  litigated  cases.  Despite  the  article’s  enduring
influence,  its  results  have  never  been  formally  proved,  and  doubts  remain  about  their  meaning,  validity,
and  generality.  This  article  makes  two  main  contributions.  First, it distinguishes  six  hypotheses  plausi-
bly  attributable  to  Priest  and  Klein.  Second,  it mathematically  proves  or  disproves  the  hypotheses  under
a generalized  version  of  Priest  and  Klein’s  model.  The  Fifty-Percent  Limit  Hypothesis  and  three  other
hypotheses  attributable  to Priest  and  Klein  (1984)  are  mathematically  well-founded  and  true  under  the
assumptions  made  by  Priest  and  Klein.  In  fact,  they  are true  under  a wider  array  of assumptions.  More
specifically,  the  Trial  Selection  Hypothesis,  Fifty-Percent  Limit  Hypothesis,  Asymmetric  Stakes  Hypoth-
esis,  and  Irrelevance  of Dispute  Distribution  Hypothesis  are  true  for  any  distribution  of  disputes  that  is
bounded,  strictly  positive,  and  continuous.  The  Fifty-Percent  Bias  Hypothesis  is  true  when  the  parties
are  very  accurate  in  estimating  case  outcomes,  but  only  sometimes  true  when  they  are  less accurate.  As
shown  in  Klerman  and  Lee  (2014),  the  No  Inferences  Hypothesis  is false.

© 2016 Elsevier  Inc.  All  rights  reserved.

. Introduction

Priest and Klein’s 1984 article, “The Selection of Disputes for Litigation,” famously hypothesized that there will be a “tendency toward
0 percent plaintiff victories” among litigated cases (p. 20). Their article has been one of the most influential legal publications, and its

nfluence is growing as empirical work on law has become more common. Compare Shapiro and Pearse (2012) to Shapiro (1996). Even with
he introduction of asymmetric information models of settlement, Priest and Klein’s article continues to be cited by sophisticated scholars
nd in respected peer-reviewed journals (see Prescott and Spier, 2016; Hubbard, 2013; Gelbach, 2012; Atkinson et al., 2009; Yildiz, 2004;
ildiz, 2003; Bernardo et al., 2000; Waldfogel, 1995; Siegelman and Donohue, 1995). In addition, Waldfogel (1998) found greater empirical
upport for the Priest-Klein model than for asymmetric information models. But see Daughety and Reinganum (2012, pp. 439–440).

Nevertheless, despite the passage of more than thirty years since the publication of Priest and Klein’s original article, their results have
ever been rigorously proved, and doubts remain about the assumptions needed to sustain their conclusions. In their article, Priest and
lein supported their main claims with simulations using normal distributions and an informal, graphical argument. As a result, the precise
tatement and scope of their claims have never been entirely clear. Others have discussed Priest and Klein’s claims in more mathematically
rounded terms. For example, Waldfogel (1995) formalized Priest and Klein’s model, following carefully their original set-up and notation.
havell (1996, p. 499, n. 20) set out “two key steps in the proof,” including one “not supplied by Priest and Klein.” But neither Waldfogel
or Shavell supplied proofs. Part of the challenge is that the plaintiff trial win rate involves triple integrals over a region of integration

hat is defined in terms of functions without closed forms (Waldfogel, 1995, p. 237). Although Hylton and Lin (2012) also formalize and
rove some of Priest and Klein’s claims, they do so using a model substantially different from, and in many ways less general than, Priest
nd Klein’s.1 This article provides the first set of rigorous proofs of Priest and Klein’s claims, while remaining faithful to Priest and Klein’s
riginal set-up.

∗ Corresponding author.
E-mail addresses: alee@law.usc.edu (Y.-H.A. Lee), dklerman@law.usc.edu (D. Klerman).

1 Hylton and Lin’s model differs from Priest and Klein’s in that Priest and Klein assume that case merit is measured by a real number, y ∈ (−∞, ∞), where the plaintiff
revails if y > y∗ , and where y∗ represents the decision standard or legal rule. In contrast, Hylton and Lin assume that case merit is a probability, and therefore, their model

s  more similar to Wittman (1985).

ttp://dx.doi.org/10.1016/j.irle.2016.06.002
144-8188/© 2016 Elsevier Inc. All rights reserved.

dx.doi.org/10.1016/j.irle.2016.06.002
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http://crossmark.crossref.org/dialog/?doi=10.1016/j.irle.2016.06.002&domain=pdf
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dx.doi.org/10.1016/j.irle.2016.06.002
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Understanding selection is fundamental to empirical analysis of decided cases. Because most cases settle, decided cases are a non-
andom subset of all cases. Hence, it is essential that scholars understand the processes by which cases settle or go to trial. While there
as been some research on selection when one party is perfectly informed and the other party is completely uninformed, Shavell (1996),
lerman and Lee (2014), there has been little investigation of the selection implication of two-sided asymmetric information models other

han Priest and Klein’s original paper and Friedman and Wittman (2007). Further investigation of such models is warranted by the fact
hat Waldfogel (1998) found greater empirical support for the Priest-Klein model than for one-sided asymmetric information models. But
ee Daughety and Reinganum (2012, pp. 439–440). Many lawyers and scholars find Priest and Klein’s main result—that close cases are
ore likely to be litigated—more plausible than the selection implications of one-sided asymmetric information models, which suggest

hat extreme cases are more likely to be litigated (Klerman and Lee, 2014). For these reasons, it is valuable to see if Priest and Klein’s results
ave mathematical foundation.

Before setting out the formal analysis, however, it is helpful to distinguish six different hypotheses, all of which are plausibly attributable
o Priest and Klein (1984):

The Trial Selection Hypothesis.  “[D]isputes selected for litigation (as opposed to settlement) will constitute neither a random nor a
representative sample of the set of all disputes” (p. 4). This proposition is probably the most important contribution of Priest and Klein’s
article.

The Fifty-Percent Limit Hypothesis.  “[A]s the parties’ error diminishes and the litigation rates declines, the proportion of plaintiff victories
will approach 50 percent” (p. 19). “In the limit, the proportion of victories will approach 50 percent exactly” (p. 18). This hypothesis is
often called the Priest-Klein hypothesis.

The Fifty-Percent Bias Hypothesis. Regardless of the legal standard, the plaintiff trial win  rate will exhibit “a strong bias toward. . . fifty
percent” as compared to the percentage of cases plaintiff would have won  if all cases went to trial (pp. 5 and 23). This is plausibly a
statement away from the limit: that is, the plaintiff trial win rate will be closer to fifty percent than the plaintiff win  rate that would be
observed if all cases went to trial.

The Asymmetric Stakes Hypothesis.  If the defendant would lose more from an adverse judgment than the plaintiff would gain, then the
plaintiff will win less than fifty percent of the litigated cases. Conversely, if the plaintiff has more to gain, then the plaintiff will win
more than Fifty-Percent (see pp. 24–26). This hypothesis is most plausibly, like the Fifty-Percent Limit Hypothesis, a statement about
the limit percentage of plaintiff victories as the parties become increasingly accurate in predicting trial outcomes.

The Irrelevance of the Dispute Distribution Hypothesis.  The plaintiff trial win  rate will be “unrelated . . . to the shape of the distribution of
disputes” (pp. 19 and 22). This hypothesis is about the plaintiff trial win rate in the limit as the parties become increasingly accurate
in predicting trial outcomes. This hypothesis is closely related to the Fifty-Percent Limit Hypothesis, but also more fundamental and
more general, because it also applies when the stakes are unequal.

The No Inferences Hypothesis.  Because selection effects are so strong, no inferences can be made about the law or legal decisionmakers
from the plaintiff trial win rate. Rather, “the proportion of observed plaintiff victories will tend to remain constant over time regardless
of changes in the underlying standards applied” (p. 31).

This paper explores the mathematical validity of each of these hypotheses, except the No Inferences Hypothesis. Klerman and Lee
2014) showed that the No Inferences Hypothesis is generally false under Priest and Klein’s original model as well as under the canonical
symmetric information models. Instead, under all standard litigation models and a plausible set of assumptions, information about the
egal standard and decisionmakers may  be inferred from the plaintiff trial win rate. Because the No Inferences Hypothesis is analyzed
xtensively in Klerman and Lee (2014), we do not discuss it further in this article.2

We  also note that Priest and Klein’s model shares many features with the literature on global games (see Morris and Shin, 2006).3 As a
esult, the analysis in this article may  open up additional avenues of research lying at the intersection of law and economics and the global
ames literature.

The rest of the article proceeds as follows. Section 2 discusses two  different ways of interpreting Priest and Klein’s model. We  note
hat the model lends itself to either a non-common-priors interpretation or a common-prior interpretation, and relate this discussion to
he game theory literature. Section 2 also discusses the absence of communication in the Priest-Klein model, a feature of the model that
s often criticized by game theorists. Section 3 begins the formalization of Priest and Klein’s model. This section assumes familiarity with
riest and Klein (1984) and is consistent with Waldfogel (1995). Although there have been other attempts to formalize Priest and Klein’s
odel (see Wittman 1985; Hylton and Lin, 2012), Waldfogel offers the formalization that is most faithful to the model in Priest and Klein’s

riginal article (see Hylton and Lin, 2012, n. 5). Nevertheless, because of the complexity of Priest and Klein’s model, we begin by presenting
 simple model in which disputes are assumed to be distributed uniformly across the real line. This simplification helps provide intuition.
n Section 4, we  allow for a more general distribution of disputes. Our second model is quite close to Priest and Klein’s original model. In
his model, the plaintiff trial win rate takes into account the underlying distribution of disputes, which is no longer assumed to be improper
niform, but the parties continue to estimate the likelihood that the plaintiff will prevail at trial as if the underlying distribution were

mproper uniform. Section 4 also presents a third model, in which the parties’ estimates take into account the underlying distribution of

isputes, which may  take any distribution that is continuous, strictly positive, and bounded above. Section 5 concludes.

Our main findings can be summarized as follows. The Trial Selection Hypothesis, the Fifty-Percent Limit Hypothesis and the Asymmetric
takes Hypothesis are valid under all three models under a wide range of assumptions. The Irrelevance of Dispute Distribution Hypothesis

2 Klerman and Lee (2014) discusses the sufficient conditions under which one can make inferences under what Section 3 infra calls Model 2. The validity of the No Inferences
ypothesis under what Section 3 infra calls Model 3 is discussed in Lee and Klerman (2015). That article shows that if the standard of deviation of the errors is sufficiently

ow,  a pro-plaintiff shift in the law may  result in a decrease in the plaintiff trial win rate under Model 3.
3 See infra Section 3.
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s valid under the second and third models, and is not meaningful under the first model, because that model assumes a single distribution
f disputes (improper uniform). The Fifty-Percent Bias Hypothesis is valid under the second model, the one most faithful to Priest and
lein’s original model, but only for a more limited set of dispute distributions.

. Priors and communication in the Priest-Klein model

Priest and Klein’s model can be interpreted in two different ways: either as a two-sided asymmetric information model with common
riors (also known as consistent priors) or as a model with non-common priors (also known as inconsistent priors). The difference between
he two interpretations comes down to whether the parties have the same beliefs about the distribution of disputes. Under the common-
rior interpretation, the parties have the same beliefs (priors) about the distribution of disputes, but each receives a private signal about
he merits of the particular case in dispute. Under the non-common-priors interpretation, the parties have different beliefs (priors) about
he distribution of disputes, those beliefs are common knowledge, and the parties do not receive any additional information (private or
ublic) about the particular case they are litigating.

In the modern literature on settlement and litigation, the common-prior asymmetric-information approach is more common (see
ebchuk, 1984; Reinganum and Wilde 1986; Schweizer, 1989). In recent years, however, the non-common-priors approach has received

ncreasing attention (Spier and Prescott, 2016; Watanabe, 2005; Yildiz, 2004; see generally Morris, 1995). One benefit of the non-common-
riors approach is that it “allows us to focus on differences in beliefs without getting drowned in the informational issues.” Yildiz (2004,
. 237). In addition, it provides justification for the divergent expectations models of suit and settlement that dominated the literature
ntil the mid-1980s. Posner (1973); Shavell (1982). In fact, the Priest-Klein model is usually classified as a divergent expectations model,
nd several scholars have stated that it should be interpreted as a model with non-common priors (Daughety and Reinganum, 2012, pp.
39–440; Yildiz, 2004, pp. 223–224).

For the purposes of presenting our results in Sections 3 and 4, we adopt the common-prior, two-sided asymmetric information inter-
retation of Priest and Klein’s model. Nevertheless, because the non-common-priors approach is interesting and yields remarkably similar
esults, we discuss it at various points as well.4

Priest and Klein’s model has been criticized for not allowing the parties to communicate with each other. Such communication would
resumably cause the parties to revise their assessments of the case and alter their settlement behavior (Hay and Spier, 1998). Before
onsidering this criticism, we note that this “no communication” feature is not unique to Priest and Klein’s model or to divergent expecta-
ions models. Indeed, the same criticism applies to some asymmetric information models as well. For example, in the standard screening

odel, Bebchuk (1984), the uninformed party makes a take-it-or-leave-it offer, and the informed party does not communicate with the
ninformed party except to accept or reject the uninformed party’s offer. In Bebchuk’s model, the offer by the uninformed party obviously
onveys no information, and acceptance or rejection by the informed party only partially reveals the informed party’s type and does not
ause any meaningful revision of the uninformed party’s assessment of the case, because acceptance ends the case and rejection leads
o trial without further opportunity to settle. Similarly, the parties in Friedman and Wittman’s (2007) two-sided asymmetric information

odel use the Chatterjee-Samuelson mechanism, under which the parties submit offers to a machine or neutral third-party, but do not
ommunicate with each other or revise their case assessments for settlement purposes based on the other party’s offer.5

The “no communication” criticism has two components. First, one might think that if the parties could communicate, the sharing of
nformation might lead them to agree on the merits of the case and thus always settle. This criticism is grounded in Aumann (1976), which
roved that if the parties have common priors and common knowledge of posteriors, the posteriors must be equal, and they cannot “agree
o disagree.” Because Aumann’s argument presupposes common priors, it does not apply to the non-common-priors interpretation of the
riest-Klein model. As applied to the common-prior interpretation, Aumann’s argument requires that communication between the parties
esult in common knowledge of their posteriors. But whether one can assume the existence of an incentive-compatible mechanism that
ould induce both parties to truthfully reveal their posteriors is unclear.

This consideration of incentive-compatible mechanisms leads to the second component of the “no communication” criticism.” Why
oesn’t the Priest-Klein model specify a mechanism, such as take-it-or-leave-it offers, under which the parties would, at least partially,
eveal their information to each other? Although we do not presume to explain Priest and Klein’s modeling choices, we follow this aspect
f their set-up for several reasons. First, Priest and Klein assume that the parties always settle if the plaintiff’s reservation price is lower
han the defendant’s reservation price. This is equivalent to assuming an ex post efficient bargaining.6 This assumption is justifiable as
ong as there exists a bargaining mechanism that guarantees ex post efficiency. Although mechanism design research has shown that, in

any bargaining situations, achieving ex post efficiency is impossible without outside subsidies,7 (see Myerson and Satterthwaite, 1983;
pier, 1994), this impossibility theorem does not apply to the common-prior interpretation of the Priest and Klein’s model. Myerson and
atterthwaite’s theorem assumes that parties’ valuations are not correlated, while in Priest and Klein’s model the plaintiff’s and defendant’s
ignals and valuations are correlated. Instead, McAfee and Reny (1992) show that, with correlated valuations, ex post efficiency is attainable
ithout external subsidy (although a budget balancer who breaks even on average may  be necessary) (see also Gelbach, 2016). Hence,
ccording McAfee and Reny (1992), it is possible to design a mechanism that implements Priest and Klein’s model with ex post efficiency.
econd, under the non-common-priors interpretation of the Priest-Klein model, the parties have complete information, and it is well known
hat ex post efficiency is attainable (Rubinstein, 1982; Spier and Prescott, 2016). Third, under the common-prior interpretation, modeling
articular mechanisms, such as take-it-or-leave-it offers or the Chatterjee-Samuelson mechanism, leads to rather complicated mathematics

4 See infra note 9 and Section 3.
5 Of course, there are litigation models in which at least one party learns from the other’s offers (see, e.g. Reinganum and Wilde, 1986; Nalebuff, 1987; Spier, 1992).
6 By ex post efficient bargaining, we mean that the parties settle whenever it is mutually beneficial to do so given their subjective assessments of case merit. The parties
ould,  however, still fail to settle if they were sufficiently optimistic relative to each other, in which case the plaintiff’s reservation value would be higher than the defendant’s.

omplete efficiency would require that the parties always settle, because litigation is a negative-sum game. Complete efficiency would be attained if the parties could, as
umann (1976) suggests, reach agreement in their assessments of case merit. In that situation, every case would settle.
7 As is typical, the Myerson-Satterthwaite model assumes individual rationality and incentive compatibility.
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ecause there is two-sided asymmetric information (Daughety and Reinganum, 2012, p. 440). We  think it worthwhile to work through the
mplications of such mechanisms and do so elsewhere. For example, Lee and Klerman (2016) show that when Priest and Klein’s model is
oupled with take-it-or-leave it offers or the Chatterjee-Samuelson bargaining mechanism, the Fifty-Percent Limit Hypothesis sometimes
emains valid. Nevertheless, given their complexity, we  think it best to analyze the selection implications of bargaining mechanisms in

 separate article. Fourth, because Priest and Klein’s famous paper assumed ex post efficiency, we think it worthwhile to employ that
ssumption here so as to show which of the hypotheses in that paper are valid under a model similar in all important respects to their
riginal.

. A simple model with an improper uniform distribution of disputes

According to Priest and Klein’s model, the merits of a case, which are determined by the case facts, are represented by a random variable
, which takes on a real number. Y is distributed according to a probability density function, gY (y). We  shall call this the distribution of
isputes.

The legal standard is given by y∗ ∈ R. If the realization of the case merit, y,8 exceeds y∗, then the plaintiff prevails. If it falls below or is
qual to y∗, then the defendant prevails. For example, in a negligence case, Y might be the efficient level of precaution expenditures minus
efendant’s actual precaution, in which case y∗ = 0. It should be noted that the discontinuous, step-function relationship between case
erit and the plaintiff’s probability of prevailing is a critical feature that distinguishes Priest and Klein’s model from canonical asymmetric

nformation models. In most asymmetric information models, party type and thus case merit is represented as the probability that the
laintiff will prevail and can take on a wide range of values between zero and one. In contrast, in Priest and Klein’s model, although case
erit is represented as any real number, those real numbers map  onto only two  probabilities—zero percent or one hundred percent.

The plaintiff and the defendant do not observe y directly, but each party instead estimates y with some error. This error may  be due to a
umber of factors, such as errors in interpreting the law, errors in interpreting his or her case facts, or incomplete information concerning
ither. These errors can be interpreted as resulting from noisy signals.9 The plaintiff receives a signal according to Yp = Y + εp, where εp is
istributed normally with mean zero and standard deviation, �. The defendant likewise receives signal Yd = Y + εd, where εd is distributed
ormally with mean zero and standard deviation, �. Priest and Klein assume that εp, εd, and Y are independently distributed.10

Although Priest and Klein predicted that their Fifty-Percent predictions would hold for a wide range of dispute distributions, for simula-
ion purposes, they used a standard normal distribution for gY (y). For the purposes of our simplified exposition in this section, we assume
nstead that Y is distributed uniformly over the entire R. In other words, gY (y) = 1 for all y ∈ R. We  will call this Model 1.

Although the assumption of uniform distribution over the entire R contradicts the standard view that densities must integrate to one,
ts mathematical properties have been worked out by Hartigan (1983) and DeGroot (2004), and it is also used in the global games literature
see Morris and Shin, 2006). Indeed, the global games literature shares a number of features with Priest and Klein’s model. Under both

odels, parties receive noisy signals about the state of the world and decide on their actions based on the inferences they make without
pdating or communication of signals. Morris and Shin show that as the standard deviation of the noise approaches zero, the parties behave
s if the underlying distribution is uniform. Morris and Shin thus motivate this “improper prior” by arguing that it can be seen as a limiting
ase either as the prior distribution becomes diffuse or as the standard deviation of the noise becomes small.11 The prior distribution would
ecome more diffuse, if, for example, gY is in the normal family and one considers the limiting situation when the standard deviation
ecomes arbitrarily large. The equivalence between results under the improper uniform prior and results under a general distribution as
he standard deviation of the noise becomes small is proven in Section 4.

Note that given the improper and uniform prior, the plaintiff’s posterior is that cases are distributed normally with mean, yp, and
tandard deviation, �. The defendant’s posterior likewise has mean, yd, and standard deviation, � (see DeGroot, 2004, p. 191).

Next, given the plaintiff’s posterior, the plaintiff computes the (subjective) conditional probability, Pp, that he will prevail. In other
ords, the plaintiff estimates the probability that case merit lies above y∗, given his realized signal, yp. Thus, Pp ≡ Pr(Y > y∗|Yp = yp). At this

oint, let V = Y−yp
� , the random variable representing the normalized difference between Y and the signal yp. Since the plaintiff prevails if Y

s greater than y∗, the plaintiff’s conditional probability of prevailing at trial is the probability that V >
y∗−yp
� , or equivalently, the probability( )
hat V <
yp−y∗
� . Thus, we can write the plaintiff’s conditional probability as Pp = �

yp−y∗
� , where � is the cumulative distribution function

f the standard normal distribution. Note that as yp goes up, the plaintiff believes he is more likely to prevail. When yp = y∗, the plaintiff

8 Priest and Klein (1984) denote realized case merit Y ′ , but, we  use y to be more consistent with modern notation. Similarly, Priest and Klein denote the plaintiff’s and

efendant’s point estimates of realized case merit, Ŷ ′
p and Ŷ ′

d
, but we  denote them as yp and yd . In order to harmonize the Priest-Klein with more modern asymmetric

pproaches, we  treat yp and yd as signals rather than estimates.
9 As noted in the Introduction, the interpretation in the text assumes common priors and asymmetric information. Another interpretation would be that the parties’ different

stimates reflect different priors. Under this interpretation, the parties do not know the distribution of disputes, gY (y). Instead, the plaintiff’s prior is that the disputes are
ormally distributed with mean yp and standard deviation �, and the defendant’s prior is that they are normally distributed with mean yd and standard deviation �, and each
arty  knows the other’s prior. For a model of this type, see Spier and Prescott (2016). With one exception, the math and results are the same under the non-common-priors
pproach as under the common-prior approach taken in the text. The exception relates to the calculation of conditional probabilities when the true distribution of disputes
s  not uniform (see Section 3). Some of the terminology used in the text and propositions would need to be altered to reflect the non-common-priors approach. For example,
ne  would need to refer to the accuracy of the parties’ priors rather than the accuracy of their signals.
10 Although we  maintain these assumptions, our proof generalizes to non-normal distributions of errors and where εp and εd are not independent from one another (see
roof  of Proposition 3 in Appendix A).
11 Morris and Shin’s finding in the global games literature that a general prior behaves as if it were an improper uniform distribution is similar to Priest and Klein’s intuition
nd  to our main finding. Nevertheless, Morris and Shin’s results do not translate directly to Priest and Klein’s model, because Morris and Shin have, in their key integrand,

 probability density function, which is by definition integrable. This means they can immediately apply the Dominated Convergence Theorem to take the limit under the
ntegral. By contrast, our “litigation probability function” is not a probability density function, so its integrability must be established (see Proof of Proposition 3 in Appendix
).
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elieves he has a fifty-percent chance of prevailing. The defendant’s conditional probability, his estimate of the probability that the plaintiff

ill prevail given his signal, is likewise given by Pd ≡ Pr(Y > y∗|Yd = yd) = �
(
yd−y∗
�

)
.

Priest and Klein assume that the parties go to trial12 if (and only if) PpJ − Cp + Sp > PdJ + Cd − Sd, where J > 0 is the damages that the
efendant pays the plaintiff if the case is litigated and the plaintiff prevails, Cp and Cd are litigation costs for the plaintiff and the defendant,
espectively, and Sp and Sd are settlement costs for the plaintiff and the defendant, respectively.13 This condition for litigation makes
ense, because settlement can only happen if both parties perceive the payoffs to settlement to be higher than the payoffs to litigation.
he litigation condition can be rewritten as Pp − Pd >

C−S
J , where C = Cp + Cd and S = Sp + Sd. This last inequality is known as the Landes-

osner-Gould condition for litigation, after the three scholars who  formulated it. We  define K ≡ C−S
J for further notational simplicity. Priest

nd Klein simulate their results with K = 1/3. We  assume 0 < K ≤ 1. Priest and Klein assume that the plaintiff always has a credible threat
o go to trial and thus can litigate or settle even when PpJ < Cp. We  retain this assumption for the paper, but discuss two ways to address
laintiff threat credibility in Appendix A.

As mentioned already, Priest and Klein are silent about how the parties bargain to arrive at a settlement. Technically, the Landes-Posner-
ould condition should be seen as a sufficient condition for litigation, rather than a necessary one: that is, litigation might happen even if

here is a range of settlement amounts that would be in their perceived mutual interest, because parties, in bargaining strategically, might
ot be able to agree on the settlement amount. Modern mechanism design research has shown that strategic bargaining frequently produces
x post inefficiency, although introduction of a third-party can also help eliminate such inefficiency (see Myerson and Satterthwaite, 1983;
ut see McAfee and Reny, 1992). Nevertheless, Priest and Klein (1984) and others using the divergent expectations model have assumed
hat the Landes-Posner-Gould condition is necessary as well as sufficient for litigation, and, for the reasons set out in Section 2, we  retain
his assumption as well.

Let ˘� (y; y∗) denote the objective probability that a dispute of merit y goes to trial when the decision standard is y∗, and where the
arties predict case merit with errors εp and εd that are distributed with mean zero and the common standard deviation �. We  call �� (y; y∗)
he “litigation probability function.” Based on our analysis above, �� (y; y∗) can be written as the probability that

Pp − Pd = �
(
yp − y∗

�

)
− �

(
yd − y∗

�

)
> K.

This expression is equivalent to

Pp − Pd = �
(
y + εp − y∗

�

)
− �

(
y + εd − y∗

�

)
> K. (1)

Thus,

�� (y; y∗) =
∫ ∫
R� (y;y∗)

(
1

�
√

2�

)2
e

− εp2

2�2 e
− εd

2

2�2 dεpdεd,

here

R� (y; y∗) =
{(
εp, εd

)
∈ R2|�

(
y + εp − y∗

�

)
− �

(
y + εd − y∗

�

)
> K

}
s the litigation set.  Therefore, �� (y; y∗) can be expressed as a double integral over a region of integration that is defined by the inequality.14

Fig. 1 plots the litigation probability function, �� (y; y∗), for large and small for �, when y∗ = 1. Note that because �� (y; y∗) represents
he probability of litigation at each y, the graph is bounded below by 0 and above by 1. Importantly, �� (y; y∗) is not a probability density
unction, because it does not always integrate to one.

These graphs provide the three key intuitions for all of the results in this article. First, note that litigation is most likely when the dispute
s close. That is, the closer a dispute, y, is to the decision standard, y∗, the greater the probability that the dispute will go to trial. This result
ollows from the normal distribution of the parties’ errors. When the true value of the dispute, y, is far from y∗, the parties’ signals are also
ikely to be far from y∗. Although the parties’ signals will differ from each other, since each party’s estimate of the plaintiff’s probability
f prevailing is the area under the portion of a normal distribution centered at their signal that exceeds y∗, the difference in the parties’
stimates will be small, because it will represent the difference in the (left or right) tails of the distributions. Conversely, when the true
alue of the disputes, y, is close to y∗, the parties’ signals are also likely to be close to y∗, and the difference in the parties’ estimates will be
arge, because it will represent differences in the broad centers of the distributions. Priest and Klein illustrate this effect in Fig. 6 of their
rticle.

Second, note that �� (y; y∗) is  symmetric around y∗. This also follows from the symmetry of the normal distribution of the parties’
rrors, although the precise reasoning is best seen in the Proof of Proposition 1. The symmetry of �� (y; y∗) around y∗ is important, because

t means that, all other things being equal, litigation is equally likely when the plaintiff will prevail (i.e., y > y∗) and when the defendant

ill prevail (i.e., y < y∗). This provides the key intuition for the idea that plaintiff is likely to win fifty percent of the litigated cases (and
ose the other fifty percent).

12 Priest and Klein and much of the later literature assume that “litigate” and “go to trial” are synonymous, because they assume that all cases either settle or go to trial.
ore  recent work explores the fact that many cases are resolved by motions to dismiss or summary judgment. Gelbach (2012); Hubbard (2013). Cases resolved by such
otions are litigated, but did not go to trial. This article, however, retains the simplifying assumption that all litigated cases go to trial. The term “disputes” or “all disputes”
eans  both cases that settle and cases that are litigated.

13 We are assuming symmetric stakes here. Asymmetric stakes are discussed below.
14 The inequality defining the region of integration, R� (y; y∗), can also be written in an explicit form as R� (y; y∗) =

{
(εp, εd) ∈ R2|��−1

(
K + �

(
y+εd−y∗

�

))
− (y − y∗) < εp

}
.

evertheless, we  retain the implicit form because it shortens the proofs.
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Fig. 1. Litigation Probability Functions (� = 1 (Left), � = 0.1 (Right); y∗ = 1; K = 1
3 ).

Third, and finally, note that as the parties become more accurate in their estimates (as � becomes smaller), the distribution of ˘� (y; y∗)
ecomes very tight around y∗. That is, only disputes very close to the decision standard have any significant probability of being litigated.
his will be important for the next section, where the assumption of a uniform distribution of disputes is dropped.

Using the probability of litigation, �� (y; y∗), we  can calculate the plaintiff trial win rate:

W� (y∗) =
∫
y∗

∞
�� (y; y∗)dy∫

−∞
∞
�� (y; y∗)dy

. (2)

The numerator is the fraction of litigated cases that are decided in favor of the plaintiff, and the denominator is the fraction of all cases
hat are litigated.15 Since �� (y; y∗) is a double integral, the plaintiff trial win  rate is a fraction in which the numerator and denominator
re both triple integrals.

Then, given the symmetry of �� (y; y∗) around y∗ we have the following result.

roposition 1. (The Fifty-Percent Hypothesis under the Improper Uniform Distribution of Disputes). Regardless of the accuracy of the
arties’ signals, if the stakes are symmetric, the plaintiff always wins fifty percent of all litigated cases. That is, for all � > 0, W� (y∗) = 1/2.

roof. We  begin with a change of variables that normalizes case merit and the parties’ signals. This will turn out to be useful for all the
ther results as well. Let u = y+εp−y∗

� , v = y+εd−y∗
� , and z = y−y∗

� . Equivalently, y = �z + y∗. Rewriting the litigation probability function in
erms of the new variables, we have

˘� (y; y∗) = �� (�z + y∗; y∗) = 1
2�

∫ ∫
R(u,v)

e−
(u−z)2

2 e−
(v−z)2

2 dudv

here R (u, v) ≡ R� (y; y∗) =
{

(u, v) |� (u) − � (v) > K
}

. Note that prior to normalization, �� (y; y∗) was  a double integral of a fixed bivariate
istribution over a region of integration in the εpεd–plane that depended on two parameters: y and �. After the variable changes,

�� (y; y∗) = �� (�z + y∗; y∗) = 1
2�

∫ ∫
R(u,v)

e−
(u−z)2

2 e−
(v−z)2

2 dudv

s a double integral of a bivariate distribution over a region of integration in the uv –plane that depends on only one parameter: z. As a
esult, the value of �� (�z + y∗; y∗) is independent with respect to the choice of � and y∗. In other words, �� (�z + y∗; y∗) = �1 (z; 0) for all

 > 0 and y∗ ∈ R. Thus, we can define ˘ (z) ≡ �1 (z; 0) = �� (�z + y∗; y∗) for all � > 0 and y∗. For each z, � (z) is an integral over R (u, v)
f a bivariate normal distribution centered at (u, v) = (z,  z).

The litigation probability function lets us compute the plaintiff trial win  rate in terms of z. Under Eq. (2), we have

W� (y∗) =
∫

0
∞
� (z)dz∫

−∞
∞
� (z)dz

. (3)

At this point, as long as � (z) is integrable (a result we  show in the proof of Proposition 3), the fifty-percent plaintiff trial win  rates

ollows from the symmetry of � (z) around z = 0. This is true because symmetry of � (z) would imply that
∫

0
∞
� (z)dz =

∫
−∞

0
� (z)dz,
o that the denominator would equal 2
∫

0
∞
� (z)dz. To prove the symmetry of � (z) around z = 0, we  need only show that for all z > 0,

(z) = � (−z) . This is easy. Since � is a cumulative distribution function of the standard normal distribution (which is itself symmetric

15 Note that the assumption of an improper uniform distribution raises the possibility that neither the numerator nor the denominator may  converge, since �� (y; y∗) is
ot  a probability density function. It is a function that takes on a value between 0 and 1 for each y. Nevertheless, this function does integrate to a finite value—a result that
urns  out to be necessary for the rest of the analysis (see Proof of Proposition 3 in Appendix A).
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round 0), we have �(x) = 1 − �(−x) for all x ∈ R. Therefore,� (u) − � (v) = (1 − � (−u)) − (1 − � (−v)) = � (−v) − � (−u) . This means
hat R (u, v) = R (−v, −u) . Therefore,

˘(z) = 1
2�

∫ ∫
R(u,v)

e−
(u−z)2

2 e−
(v−z)2

2 dudv = 1
2�

∫ ∫
R(−v,−u)

e−
(u−z)2

2 e−
(v−z)2

2 dudv = 1
2�

∫ ∫
R(u,v)

e−
(−v−z)2

2 e−
(−u−z)2

2 (−dv)(−du)

= 1
2�

∫ ∫
R(u,v)

e−
(u+z)2

2 e−
(v+z)2

2 dudv = 1
2�

∫ ∫
R(u,v)

e−
(u−(−z))2

2 e−
(v−(−z))2

2 dudv = ˘(−z).�

Before moving on, we make three observations. First, Proposition 1 is a stronger result than the Fifty-Percent Limit Hypothesis in
hat the plaintiff trial win rate is fifty-percent for all � > 0, not just in the limit. This is due to our assumption of the improper uniform
istribution of disputes, which is symmetric around y∗ (or around any y, for that matter). We  show in the next section that if the improper
niform distribution is replaced with a “well-behaved” (continuous, bounded, strictly positive) distribution of disputes, which may  not be
ymmetric around y∗, the result will hold only in the limit as � approaches zero. Second, the Fifty-Percent Bias Hypothesis is not relevant
o the model with the improper uniform distribution of disputes, because the probability that the plaintiff will prevail if all disputes were
itigated is a fraction for which the numerator and the denominator are both infinite—the integral of a uniform distribution over the real
ine or a portion of the real line truncated at the left by y∗. Third, the Irrelevance of the Distribution Dispute Hypothesis is inapplicable in
he case of the improper uniform distribution, because this model assumes only one distribution of disputes.

Now we move on to discuss asymmetric stakes. Priest and Klein allow the parties to have asymmetric stakes and suggest there will be
 deviation from fifty-percent plaintiff trial victories in such cases. For example, the defendant might have more at stake in cases involving
roduct liability, where an adverse judgment would damage the defendant’s reputation or could be used against it in other cases. Conversely,
ut less commonly, the plaintiff would have more at stake in cases alleging patent infringement, where a judgment invalidating the patent
ould bar suits against other alleged infringers. As Waldfogel (1995) points out, asymmetric stakes can be formalized by assuming that

he plaintiff would win ˛J if it prevailed and the defendant would lose J if the plaintiff won. If  ̨ < 1, this indicates that the defendant has
ore at stake in the litigation than the plaintiff, and vice versa. The trial condition now becomes ˛Pp − Pd > K .16 Note, however, that when

 ≤ K , no disputes will go to trial because the trial condition is never satisfied given that Pp ≤ 1. Therefore, we will always assume  ̨ > K
or the remainder of our analysis.

We can then follow the same approach as when the stakes were symmetric. First, let �˛,� (y; y∗) denote the probability that a dispute
f merit y goes to trial when the stakes are asymmetric. By analogous reasoning, we obtain

�˛,� (y; y∗) =
∫ ∫

R˛,� (y;y∗)

(
1

�
√

2�

)2
e

− εp2

2�2 e
− εd

2

2�2 dεpdεd,

here

R˛,� (y; y∗) =
{(
εp, εd

)
|˛�

(
y + εp − y∗

�

)
− �

(
y + εd − y∗

�

)
> K

}
s the litigation set. The plaintiff trial win rate becomes

W˛,� (y∗) =
∫
y∗

∞
�˛,� (y; y∗)dy∫

−∞
∞
�˛,� (y; y∗)dy

. (4)

Importantly, when  ̨ /= 1, the litigation probability function is no longer symmetric around y∗. Instead, if the plaintiff has less at stake
han the defendant, the litigation probability will peak before y∗; and if the plaintiff has more at stake than the defendant, the litigation
robability function will peak after y∗. Fig. 2 depicts litigation probability functions for  ̨ = 0.5 and  ̨ = 1.5.

Under this set-up, we have the following result.

roposition 2. (The Asymmetric Stakes Hypothesis under the Improper Uniform Distribution of Disputes). Regardless of the accuracy of the
arties’ signals, the party with more at stake wins more of the litigated cases. That is, for all � > 0, W˛,� (y∗) > 1/2 for  ̨ > 1 and W˛,� (y∗) < 1/2

or  ̨ < 1.

We  include the proof in Appendix A, but the main strategy is to show that when  ̨ /= 1, the graphs of �˛,� (y; y∗) are indeed skewed
s in Fig. 2. Consequently, when the defendant has more at stake, more litigated disputes are to the left of y∗ (the left graph), and so the
efendant wins a greater fraction of litigated cases. Conversely, when the plaintiff has more at stake, more litigated cases are to the right
f y∗ (the right graph), and so the plaintiff wins a greater fraction of litigated cases.
Fig. 3 illustrates the plaintiff trial win rate as  ̨ varies. The result is not strictly monotonic. Instead, simulation shows a slight dip in the
eginning near K. In addition, as discussed further in Appendix A, there is a discontinuity at  ̨ = 1 + K , where the plaintiff trial win  rate

umps to one.

16 Note that under Waldfogel’s formalization, K does not vary with ˛. We retain this assumption for our analyses. Allowing K to vary with  ̨ will not affect any of the
utcomes of Proposition 2 or Proposition 5, which are all statements about a given ˛.
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Fig. 2. Litigation Probability Functions with Asymmetric Stakes (  ̨ = 0.5 (Left),  ̨ = 1.5 (Right); � = 1; y∗ = 1; K = 1
3 ).

4

u

A
a

g

r

m

t
s
l
r

g
d
t
d

l

Fig. 3. The Plaintiff Trial Win  Rate (in the Limit) for Asymmetric Stakes (K = 1
3 ).

. The general case

In this section, we retain most of the set-up of the model as discussed in Section 3 but relax the assumption that Y is distributed
niformly across the entire real line. Instead, we assume gY is a well-behaved probability density function in the following sense.

ssumption A1. (Well-Behaved Dispute Distribution). gY (y) is a probability density function that is strictly positive, continuous, and bounded
bove.17

A1 assures, for example, that gY (y) has full support and that it does not contain any probably mass functions. Using a well-behaved
Y rather than the improper uniform distribution affects the analysis in two  ways. First, the distribution affects the plaintiff trial win

ate. W˛,� (y∗) will no longer be

∫
y∗

∞
�˛,� (y;y∗)dy∫

−∞
∞
�˛,� (y;y∗)dy

, but instead, the integrand must be the litigation probability function weighted and thus

ultiplied by the distribution of disputes. Hence, we have

W˛,� (y∗) =
∫
y∗

∞
�˛,� (y; y∗) gY (y)dy∫

−∞
∞
�˛,� (y; y∗) gY (y)dy

=
∫

0
∞
�˛ (z) gY (�z + y∗)dz∫

−∞
∞
�˛ (z) gY (�z + y∗)dz

. (5)

Fig. 4 shows how �˛,� (y; y∗) and gY interact for different � values when stakes are symmetric,  ̨ = 1.18 The graphs on the left show
he distribution of all disputes (the solid line) and the probability of litigation for each value of y (the dotted line). The graphs on the right
how the distribution of litigated disputes, which is derived by multiplying the density of the dispute distribution times the probability of
itigation. The top right panel shows the result when � = 0.5. The bottom right panel shows the result when � = 0.2. The plaintiff trial win
ate, W˛,� (y∗),  is the area under the product graph (the right panel) for y > y∗ divided by the area under the entire product graph.

These graphs provide the key intuition for the general model. As the parties become more accurate in predicting outcomes (i.e., as �
ets smaller), the distribution of litigated disputes becomes more symmetric around the decision standard, y∗. This follows from the fact,

iscussed in the previous section, that the litigation probability function, �˛,� (y; y∗), is symmetric and becomes tighter and tighter as
he parties become more accurate. Since the distribution of litigated disputes is the litigation probability function, �˛,� (y; y∗), times the
istribution of all disputes, gY (y), as the litigation probability function becomes tighter and tighter, the distribution of litigated disputes also

17 In fact, all of the propositions are true if the distribution is bounded everywhere, but strictly positive and continuous only at y∗ . It can be zero or discontinuous elsewhere.
18 The graphs also assume Assumption A2a, discussed later. Assumptions A2b would not fundamentally change the graphs. Although the litigation probability would no
onger  be symmetric, it would become increasingly symmetric as � approaches zero.
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Fig. 4. Distribution of Disputes and Litigated Cases (� = 0.5 (top), � = 0.2 (Bottom);  ̨ = 1; y∗ = 1; K = 1
3 ).

ecomes tighter and more symmetric. The fact that only disputes close to the decision standard will be litigated means that the distribution
f all disputes is nearly irrelevant. It simply does not matter how disputes far from the decision standard are distributed, because they will,
or all practical purposes, never be litigated. As the parties’ estimates become increasingly accurate (i.e., as � goes to zero), more and more
isputes become “far” from y∗, and the fraction of disputes that matter can become arbitrarily small. That is, all that matters are disputes
hat are arbitrarily close to y∗. As long as the distribution of all disputes is continuous at y∗, the difference in the density of disputes to the
eft and right of y∗ can be made arbitrarily small. As a result, the density of the distribution of disputes—loosely speaking—will look flat
ear y∗. This is why models with a well-behaved distribution of disputes in this section produce results that are nearly identical to models
ith a uniform improper distribution, discussed in the previous section.

Note that the plaintiff trial win rate, W˛,� (y∗),  does initially depend on the shape of the distribution of disputes, gY . But as Fig. 4 shows, as
 becomes small, the graphs of the litigated cases become increasingly symmetric around y∗. Thus, it makes sense that this ratio converges
o fifty percent as � approaches zero.19 In Proposition 3, we show that the term gY (�z + y∗) disappears from W˛,� (y∗) in the limit as �
pproaches 0, and therefore the limit value of the plaintiff trial win  rate will depend only on the shape of �˛,� (y; y∗). Put differently, in
he limit, gY may  be assumed to equal 1 for all y, which allows us to appeal to Proposition 1 and Proposition 2 for the main results.

There is a second way that gY can affect the analysis. It could affect how each party calculates the probability that the plaintiff will prevail

t trial. Under the improper uniform distribution, the parties’ estimates of the plaintiff’s probability of prevailing were Pp = �
(
yp−y∗
�

)
and

d = �
(
yd−y∗
�

)
. We  designate this assumption as A2a.

ssumption A2a. (Conditional Probability of Plaintiff Victory with Laplacian Beliefs).

Pp ≡ Pr(Y > y∗|Yp = yp) = �
(
yp − y∗

�

)
and Pd ≡ Pr(Y > y∗|Yd = yd) = �

(
yd − y∗

�

)
.

Assumption A2a is consistent with Priest and Klein (1984) and Waldfogel (1995). In addition, other divergent expectations models have
ade similar assumptions (see Wittman, 1985). Nevertheless, it is important to note that, under Assumption A2a, the parties construct
heir subjective probabilities as if the distribution of disputes were flat. This may  be a reasonable assumption if gY is not known by the
arties. After all, the fact that we incorporate the well-behaved distribution into the plaintiff win  rate does not imply that the parties know

t. Morris and Shin in their work on global games justify an assumption similar in spirit to Assumption A2a by calling this type of belief

19 Nonetheless, the fifty-percent result is still not obvious, because, as the graph becomes increasingly symmetric, both the area to the right of y∗ and the entire area under
he  curve approach zero. In other words, as � approaches zero, both the numerator and the denominator of W˛,� (y∗) will approach zero. Meanwhile, because both the
umerator and the denominator involve a triple integral over the region of integration defined by an inequality, L’Hopital’s rule cannot readily be used to simplify the limit.
or  this reason, it is not clear that the limit will be exactly fifty percent when  ̨ = 1, and an analysis of the behavior at the limit is warranted (see the Appendix A).
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Laplacian” (Morris and Shin, 2006, p. 58), following Laplace’s suggestion that one should apply a uniform distribution to unknown events
rom the “principle of insufficient reason.”20

On the other hand, if they were fully informed about gY , rational parties would take into account that knowledge when calculating the
robability that the plaintiff would prevail. For example, suppose the plaintiff receives a particular signal yp, but also knows that according
o gY very few cases lie above yp but a great many cases lie below yp. Then it would be rational for the plaintiff to assume that it is more
ikely that true case merit lies below yp. For this reason, the plaintiff’s subjective probability that he will win  at trial will not simply be

p = �
(
yp−y∗
�

)
, as it was when gY was uniform improper. Rather, possible values of Y will have to be weighted by the distribution of

isputes, gY . Therefore,

Pp = Pr(Y > y∗|Yp = yp, gY ) =
∫
y∗

∞ 1
�

√
2�
e

− (yp−y)2

2�2 gY (y)dy

∫
−∞

∞ 1
�

√
2�
e

− (yp−y)2

2�2 gY (y)dy

=
∫
y∗

∞
e

− (yp−y)2

2�2 gY (y)dy

∫
−∞

∞
e

− (yp−y)2

2�2 gY (y)dy

. (6)

The defendant will similarly take into account the distribution of disputes when calculating its estimate of the probability that the
laintiff prevails. We designate this alternative assumption as A2b.

ssumption A2b. (Conditional Probability of Plaintiff Victory with Knowledge of gY ).

Pp ≡ Pr(Y > y∗|Yp = yp, gY ) =
∫
y∗

∞
e

− (yp−y)2

2�2 gY (y)dy

∫
−∞

∞
e

− (yp−y)2

2�2 gY (y)dy

and Pd ≡ Pr(Y > y∗|Yd = yd, gY ) =
∫
y∗

∞
e

− (yd−y)2

2�2 gY (y)dy

∫
−∞

∞
e

− (yd−y)2

2�2 gY (y)dy

.

Because A2a and A2b are conflicting assumptions, they generate two  different models. We present the results under both assumptions
or four reasons. First, both are empirically plausible. If parties lack good information about the distribution of disputes, then A2a is more
ealistic. If parties have good knowledge about the distribution of disputes, then A2b is more realistic. Second, both are of theoretical
nterest. A2a is more faithful to Priest & Klein’s original model, but A2b is more consistent with other asymmetric information models of
ettlement in that parties calculate their subjective conditional probabilities using accurate information about the distribution of disputes,
Y . Third, A2a best reflects the non-common-priors interpretation of the Priest-Klein model. If the parties’ different estimates reflect not
ifferent signals, but rather different assumptions (priors) about the distribution of disputes, where both assume that the distribution
f disputes is normally distributed with standard deviation � (but different means, yp and yd), then A2a is the correct statement of the
onditional probabilities. Fourth, proving results under A2b requires first proving them under A2a.

In spite of the differences between Assumptions A2a and A2b, all results pertaining to limit values of the plaintiff win rate (as �
pproaches zero) coincide. This is driven by the fact that, in the limit, the underlying distribution of disputes behaves as if it were flat.
ndeed, note that the conditional probabilities in A2b reduce to those in A2a if we  assume gY (y) = 1. Therefore, it is only away from the
imit that the plaintiff trial win rates under the two  models may  diverge.

To simplify the propositions, we define two models:
Model 2 (Well-Behaved Dispute Distribution with Laplacian Beliefs). Assumptions A1 and A2a.
Model 3 (Well-Behaved Dispute Distribution with Knowledge of gY ). Assumptions A1 and A2b.
With these assumptions, we have the following results.

roposition 3. (The Irrelevance of the Dispute Distribution Hypothesis under Well-Behaved Dispute Distribution). Under both Model 2
well-behaved dispute distribution with Laplacian beliefs) and Model 3 (well-behaved dispute distribution with knowledge of gY ), the limit value
f the plaintiff trial win rate as the parties become increasingly accurate in estimating the case merit is independent of the distribution of disputes
ecause the plaintiff trial win rate converges to the rate that would obtain under the improper uniform distribution of disputes. More specifically,

lim
�→0+

W˛,� (y∗) =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

∫ ∞

0

�˛ (z)dz∫ ∞

−∞
�˛ (z)dz

for K <  ̨ < 1 + K

1 for  ̨ ≥ 1 + K

.

Note that W˛,� (y∗) is undefined at � = 0. This is because when � = 0, each party knows whether it will win  or lose with one-hundred-
ercent certainty and no disputes will go to trial. Proposition 3 is therefore a statement about the limit value of a function at a point at which

t is undefined.
∗
Note that W˛,� (y ) is undefined at � = 0 when K <  ̨ ≤ 1 + K because no disputes will go to trial. In this case, both sides will know with one-

undred-percent certainty whether the plaintiff will win  or lose. Therefore, Pp = Pd = 0 or 1, and the condition for litigation (˛Pp − Pd > K)
an never be met. For these cases, Proposition 3 is a statement about the limit value of a function at a point at which it is undefined. By

20 Hartigan (1983, p. 2) notes that “Laplace, following Bernoulli (1713) used the principle of insufficient reason which specifies that probabilities of two events will be
qual  if we  have no reason to believe them different. An early user of this principle was  Thomas Bayes (1763), who apologetically postulated that a binominal parameter p
as  uniformly distributed if nothing were known about it.” If one extends this idea that “the probabilities of two  events will be equal if we have no reason to believe them

ifferent” to continuous distributions, then the result is a uniform distribution.
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ontrast, when  ̨ > 1 + K, trial is possible even when the parties completely agree on the case outcome, because plaintiff has far more to
ain from a trial victory than defendant would lose, so the defendant would not be willing to pay enough to convince the plaintiff to settle.
t is because those certain-to-win cases (for plaintiffs) will always go to trial when  ̨ > 1 + K that the plaintiff trial win rate in the limit is
nevitably 1 for such cases.

We  provide a very brief sketch of the proof here under Assumption A2a when K <  ̨ < 1 + K . A modified argument applies for the
cenario with Assumption A2b, and the full proofs for both cases (as well as when  ̨ ≥ 1 + K) are included in Appendix A. Recall that

W˛,� (y∗) =
∫

0
∞
�˛ (z) gY (�z + y∗)dz∫

−∞
∞
�˛ (z) gY (�z + y∗)dz

.

For the main result, we are done if we can take the limits under the integral by applying Lebesgue’s Dominated Convergence Theorem.
n that case, because �˛ (z) is independent of � (in the uv-coordinate space) and gY (y) is continuous and strictly positive, we have
lim
→0+

gY (�z + y∗) = gY (y∗) /=  0 and therefore,

lim
�→0+

W˛,�(y∗) = lim
�→0+

∫
0

∞
�˛(z)gY (�z + y∗)dz∫

−∞
∞
�˛(z)gY (�z + y∗)dz

=

∫
0

∞
lim
�→0+

˘˛(z)gY (�z + y∗)dz∫
−∞

∞
lim
�→0+

˘˛(z)gY (�z + y∗)dz
=

∫
0

∞
�˛(z)gY (y∗)dz∫

−∞
∞
�˛(z)gY (y∗)dz

=
∫

0
∞
�˛(z)dz∫

−∞
∞
�˛(z)dz

.

Application of Lebesgue’s Dominated Convergence Theorem, however, requires existence of a Lebesgue-integrable function that
ominates �˛ (z) gY (�z + y∗).  Since gY (�z + y∗) is bounded above by Assumption A1, we need only show �˛ (z) is integrable—that is,
oth

∫
0

∞
�˛ (z)dz and

∫
−∞

∞
�˛ (z)dz converge.

As noted already, for each z, �˛ (z) is an integral of a bivariate normal distribution centered at (u, v) = (z,  z) and evaluated over R˛ (u, v).
eanwhile, it is easy to show that, when K <  ̨ < 1 + K , R˛ (u, v), as a region in the uv–space, lies entirely below some horizontal asymptote

nd to the right of some vertical asymptote. This means that, as z moves away from 0 (in either direction), the center of the distribution,
oo, will move farther away from R˛ (u, v). Therefore, according to bivariate Chebyshev’s Inequality, �˛ (z) must eventually decrease at the
peed of z−2 (or faster). Hence,

∫
−∞

∞
�˛ (z)dz must converge, and Proposition 3 follows.

Furthermore, because Proposition 3 establishes that in the limit, the case of a well-behaved distribution reduces to the case of the
mproper uniform distribution, we can appeal to the results of Proposition 1 and Proposition 2 for the limit cases with a well-behaved
istribution. Thus, we immediately get the following two results.

roposition 4. (The Fifty-Percent Limit Hypothesis under Well-Behaved Dispute Distribution). Under both Model 2 and Model 3, if the
takes are symmetric, the plaintiff trial win rate converges to fifty percent as the parties become increasingly accurate in estimating the case
erits. That is, lim

�→0+
W� (y∗) = 1/2.

roposition 5. (The Asymmetric Stakes Hypothesis under Well-Behaved Dispute Distribution). Under both Model 2 and Model 3, as the
arties become increasingly accurate in estimating the case merits, the plaintiff trial win rate converges to less than fifty-percent if the defendant
as more at stake, and converges to more than fifty percent if the plaintiff has more at stake. That is, lim

�→0+
W˛,� (y∗) > 1/2 for  ̨ > 1 and

lim
→0+

W˛,� (y∗) < 1/2 for  ̨ < 1.

Because Proposition 5 follows directly from Proposition 2, note that even when gY is a well-behaved distribution satisfying Assumption
1, Fig. 3 still accurately depicts the limit value of the plaintiff trial win rate for disputes with asymmetric stakes.

Thus far we have limited our analysis to hypotheses relating to the limit as parties become increasingly accurate in predicting trial
utcomes. Our analysis, however, also offers some insight into the Fifty-Percent Bias Hypothesis. That hypothesis says that the plaintiff
rial win rate will be closer to fifty percent than the percentage of cases that plaintiff would have won if all cases had been litigated and
one had settled.

Note first that this hypothesis is a priori plausible only if the following two  conditions are met: the stakes are symmetric (  ̨ = 1), and the
laintiff trial win rate if all cases were litigated is not itself fifty percent. If the first condition (symmetric stakes) is not satisfied, Proposition

 tells us that the limit value of the plaintiff trial win  rate will not itself be fifty percent, and therefore, the Fifty-Percent Bias Hypothesis will
ometimes be false for sufficiently small values of �. On the other hand, if the first condition (symmetric stakes) is satisfied, the plaintiff
rial win rate will converge to fifty percent, and thus it is reasonable to think that the plaintiff trial win rate in the real world (where most
ases settle) will be closer to its limit value than the plaintiff trial win  rate in a counterfactual world where no cases settle. The second
ondition is necessary because if the plaintiff’s trial win  rate when no cases are settled happens to be fifty percent, it is impossible for the
laintiff trial win rates to be closer to fifty percent. Meanwhile, if these two conditions are satisfied, as a corollary to the Fifty-Percent Limit
ypothesis, we can conclude that for � values that are sufficiently small, the Fifty-Percent Bias Hypothesis must be true.

On the other hand, if � is sufficiently high, the Fifty-Percent Bias Hypothesis will not be generally true unless we  make more
estrictive assumptions about gY . We  show that under Model 2,21 if gY is symmetric (not necessarily around y∗) and is logarithmically
oncave—conditions which are satisfied, for example, by normal distributions but also others as well—the Fifty-Percent Bias Hypothesis is
rue away from the limit as well. These are sufficient conditions, rather than necessary conditions. This is clear since a small perturbation
n the distribution of disputes would be unlikely to thwart the overall selection bias. Nevertheless, we  also show that neither symmetry
or logarithmically concave cumulative distribution by itself is sufficient (see the Appendix A for proofs).
roposition 6. (The Fifty-Percent Bias Hypothesis under Well-Behaved Dispute Distribution). Under both Model 2 and Model 3, when the
arties’ stakes are symmetric, the Fifty-Percent Bias Hypothesis will be true for sufficiently small values of � as long as

∫
y∗

∞
gY (y)dy /= 1/2. In

21 We do not have results for the Fifty-Percent Bias Hypothesis for general � under Model 3.
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ther words, as � approaches zero, the plaintiff trial win rate will (eventually) be closer to fifty percent than the would-be plaintiff win rate if
ll disputes were to go to trial. For general values of � > 0, the Fifty-Percent Bias Hypothesis will be true under Model 2, if gY is symmetric and

ogarithmically concave,  ̨ = 1, and
∫
y∗

∞
gY (y)dy /= 1/2.

. Conclusion

This paper provides a rigorous analysis of Priest and Klein’s conclusions about the selection of disputes for litigation. It distinguishes
everal hypotheses plausibly attributable to Priest and Klein, and proves or disproves them. We  conclude that several of the hypotheses
ttributable to Priest and Klein (1984) are mathematically well-founded and true under the assumptions made by Priest and Klein. More
pecifically, under Priest and Klein’s original model, the Trial Selection Hypothesis, Fifty-Percent Limit Hypothesis, Asymmetric Stakes
ypothesis, and Irrelevance of Dispute Distribution Hypothesis are true for any distribution of disputes that is bounded, strictly positive and

ontinuous. The Fifty-Percent Bias Hypothesis is true when the parties are very accurate in estimating case outcomes, but only sometimes
rue when parties are less accurate. Finally, we have also shown that even under the modified model in which the parties make inferences
egarding the probability that the plaintiff would prevail by taking into account the underlying distribution of disputes, all of the limit
esults from the original model go through.
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ppendix A.

This Appendix A contains proofs not included in the main text as well as some additional results referenced in the main text. We  prove
ll the results beginning with Proposition 2, and then turn to discuss the credibility of the plaintiff’s threat to go to trial. We  begin with
emma  A1, which describes the general shape of R˛ (u, v) for various values of ˛.

emma  A1. (The Shape of R˛ (u, v))

R˛ (u, v) is non-empty if and only if  ̨ > K .
For all  ̨ > K , R˛ (u, v) is bounded left by a vertical asymptote at u = �−1

(
K
˛

)
.

For all  ̨ < 1 + K , R˛ (u, v) is bounded above by a horizontal asymptote v = �−1 (  ̨ − K).
When  ̨ ≥ 1 + K , R˛ (u, v) is not bounded above, and if  ̨ > 1 + K , it is characterized by a region to the right of an increasing curve that has
two vertical asymptotes, at u = �−1

(
K
˛

)
and u = �−1

(
1+K
˛

)
.

When  ̨ = 1 + K , then the boundary of R˛ (u, v) in the first quadrant is characterized by an asymptote with a slope of 1, and the boundary
approaches it monotonically.

Proof of Lemma  A1.  If  ̨ ≤ K , R˛ (u, v) is  empty since ˛� [u] − � [v] <  ̨ ≤ K for all (u, v). On the other hand, if  ̨ > K , for high enough
 and low enough v, we can find some value such that ˛� [u] − � [v] > K. Meanwhile, if ˛� [u] − � [v] > K, then ˛� [u] > K , and thus
˛ (u, v) is bounded left by u = �−1

(
K
˛

)
. Intuitively, this vertical bound implies that if the defendant believes that the plaintiff will prevail

ith probability zero, then as long as the plaintiff draws a signal less than a certain value, the parties will not go to trial because there will not
e enough disagreement to induce litigation. If  ̨ < 1 + K, � [v] < ˛� [u] − K ≤  ̨ − K. Thus, R˛ (u, v) is bounded above by v = �−1 (  ̨ − K).
imilarly, this horizontal bound implies that if the plaintiff believes that he will prevail with probability one, then as long as the defendant
raws a signal above a certain value, the case will settle. Meanwhile, if  ̨ ≥ 1 + K, then the boundary curve ˛� [u] − � [v] = K must
ontinually increase as u increases. Furthermore, if  ̨ > 1 + K , then the inequality must hold for all value of u > �−1

(
1+K
˛

)
and all values

f v.
Now suppose  ̨ = 1 + K. Note first that u > v for all (u, v) ∈ R˛ (u, v). This is because (1  + K)� [u] − � [v] > K implies � [u] − � [v] >

(1 − � [u]) > 0. Therefore, R˛ (u, v) must lie strictly under the line v = u, and the boundary cannot have a slope greater than 1 in the limit.
ow it suffices to show that, given any point (u, v) ∈ R˛ (u, v), we must also have (u + x, v + x) ∈ R˛ (u, v) for all x ≥ 0. This means R˛ (u, v)
ust wholly contain its own translation in the direction of v = u. This will ensure that the boundary will have slope at least 1 at all points.

o see this, we show that all points in R˛ (u, v) will be properly contained in R˛ (u, v) when translated upward by x. This amounts to showing
he following: if (1 + K)� [u] − � [v] ≥ K , then (1  + K)� [u + x] − � [v + x] ≥ K , where x ≥ 0. To show this, we rewrite the statement as

ollows: if
(

1−�[v]
1−�[u]

)
≥ K + 1, then

(
1−�[v+x]
1−�[u+x]

)
≥ K + 1. It is then sufficient to show that

(
1−�[v+x]
1−�[u+x]

)
≥
(

1−�[v]
1−�[u]

)
, or simply that 1−�[v+x]

1−�[u+x] is

ncreasing in x. Under the quotient rule, this will be true as long as

(1 − ˚ [u + x]) (−f (v + x)) − (1 − ˚ [v + x]) (−f (u + x)) ≥ 0,

here f is the standard normal density function. This can be rewritten as f (u+x)
(1−�[u+x]) ≥ f (v+x)

(1−�[v+x]) . The last result is true (for u > v) when
(x) has an increasing hazard rate, which is true for the standard normal density function. �

Fig. 5 illustrates the regions of integration. The left figure shows the region of integration for  ̨ = 1. Note that the region of integration,
1 (u, v),  is always bounded by a horizontal asymptote above and by a vertical asymptote on the left. In other words, the region of integration
an be contained by a translated fourth quadrant. As discussed in Lemma  A1, R˛ (u, v) will always satisfy this property whenever K <  ̨ <
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Fig. 5. Litigation Sets (  ̨ = 1 (Left) and  ̨ > 1 + K (Right); K = 1
3 ).
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Fig. 6. Litigation Sets (K <  ̨ < 1 (Left) and 1 <  ̨ < 1 + K (Right); K = 1
3 ).

 + K . In contrast, as illustrated by the right figure, for  ̨ > 1 + K , R˛ (u, v) will not be bounded by any horizontal asymptote, but will be
haracterized by two vertical asymptotes.

Proof of Proposition 2. Note that
∫

0
∞
�˛ (z)dz is evaluated by centering the bivariate distribution of errors at each point along the line

 = u in the first quadrant and integrating it over the shaded area.
∫

−∞
∞
�˛ (z)dz is evaluated by carrying out the similar integration along

he entire line v = u. To show that the win rate is greater or less than fifty-percent, it suffices then to compare
∫

0
∞
�˛ (z)dz to

∫
−∞

0
�˛ (z)dz.

his can be done by looking at symmetry or asymmetry of R˛ (u, v) across the line v = −u.
For  ̨ > 1 + K, the result is obvious since R˛ (u, v) shows that �˛ (z) approaches 1 as z approaches infinity, but will approach 0 as z

pproaches negative infinity. A similar argument applies when  ̨ = 1 + K .
Now assume K <  ̨ < 1 + K . In this case, as noted already, the region of integration, R˛ (u, v), is always bounded by a horizontal asymptote

bove and by a vertical asymptote on the left. As shown in Fig. 6, when K <  ̨ < 1, the top boundary of R˛ (u, v), when reflected across the
ine v = −u is bounded left by the left boundary of R˛ (u, v). The reflection of the top boundary is represented by the dotted line that lies

nside R˛ (u, v) and is nearly vertical. This shows that R˛ (u, v) is composed of a subregion that is symmetric around v = −u and a separate
ubregion that lies entirely below v = −u (the side more favorable toward the plaintiff). Conversely, when 1 <  ̨ < 1 + K , the region of
ntegration will be biased towards the first-quadrant.  As shown in the right graph of Fig. 6, this time the left boundary of R˛ (u, v), when
eflected across the line v = −u is bounded above by the top boundary of R˛ (u, v), indicating more litigated cases for the defendant.
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We  show this more formally. Note that the horizontal asymptote, �−1 (  ̨ − K), occurs at a value that is more positive than the vertical
symptote, �−1

(
K
˛

)
, is negative if and only  ̨ > 1. In other words, |�−1 (  ̨ − K) | is greater (less) than |�−1

(
K
˛

)
| if  ̨ > 1(˛  < 1). This is

bvious since �
(
−�−1

(
K
˛

))
= 1 − �

(
�−1

(
K
˛

))
=

(
1 − K

˛

)
and �

(
�−1 (  ̨ − K)

)
= ˛

(
1 − K

˛

)
.

Suppose  ̨ > 1. To show that the limit value of the plaintiff trial win  rate is greater than ½, it suffices to show that R˛ (u, v) is skewed
n the direction of the first quadrant in the following sense. Take S˛ (u, v) = R˛ (u, v) ∩

{
(u, v) |v < −u

}
. Then S˛ (u, v) is the portion of

˛ (u, v) that lies below the line v = −u. Let S
′
˛ (u, v) = {(−v, −u) | (u, v) ∈ S˛ (u, v)}. S

′
˛ (u, v) is the reflection of S˛ (u, v) over the line v = −u.

e show that S
′
˛ (u, v) ⊂ R˛ (u, v). This means that the entire region of integration that lies below v = −u can be reflected across the line

 = −u and that reflection will be properly contained in R˛ (u, v). Since R˛ (u, v) contains additional regions above the line v = −u (because
he horizontal asymptote is more positive than the vertical asymptote is negative in this case), this shows that R˛ (u, v) is skewed in the
irection of the first quadrant, and this is sufficient to show that the plaintiff win  rate will be higher than fifty percent. To see this, take
way the portion that is symmetric, which is S˛ (u, v) ∪ S

′
˛ (u, v). What is left must lie entirely on the side of v > −u, and hence closer

o the plaintiff’s win side than the defendant’s win side. To show S
′
˛ (u, v) ⊂ R˛ (u, v), we need to show the following: If (i)  ̨ > 1, (ii)

� [u] − � [v] > K , and (iii) v < −u, then ˛� [−v] − � [−u] > K . In turn, it suffices to show that if (i)  ̨ > 1 and (ii) � [v] < � [−u], then
� [−v] − � [−u] > ˛� [u] − � [v], since the last expression will be greater than K . But this last inequality rearranges as follows:

˛� [−v] − � [−u] > ˛� [u] − � [v] ⇔ ˛ (1 − � [v]) −  � [−u] > ˛ (1 − � [−u]) − � [v] ⇔ (  ̨ − 1) (� [−u] − � [v]) > 0,

hich is immediate since  ̨ > 1 and −u > v for (u, v) ∈ S˛ (u, v). Therefore, the limit value of the plaintiff’s win rate is greater than fifty
ercent. Notice by the same logic that the last inequality also holds when we have  ̨ < 1 and v > −u. This shows that when  ̨ < 1, R˛ (u, v)

s skewed in the direction of the third quadrant, and hence the limit value of the plaintiff win rate is lower than 1/2. �

Proof of Proposition 3. We  first show the results for Model 2 when  ̨ ∈ (K, 1 + K). Given the sketch of the proof included in the

ain text, we need only show that
∫

0
∞
�˛ (z)dz and

∫
−∞

0
�˛ (z)dz are finite. Lemma A1 tells us that R˛ (u, v) is properly contained by a

ranslated fourth quadrant in the uv–plane with the origin at
(
�−1

(
K
˛

)
, �−1 (  ̨ − K)

)
, which in turn is contained by a similar quadrant with

he origin at
(
�−1

(
K
˛

)
, |�−1 (  ̨ − K) |

)
. This set is obviously contained in all of R2. Moreover, for z > |�−1 (  ̨ − K) | > 0, the point (z, z) is

t least z − |�−1 (  ̨ − K) | = |z| − |�−1 (  ̨ − K) | away from R˛ (u, v). For z < �−1
(
K
˛

)
, (z, z) is at least |z − �−1

(
K
˛

)
| = |z| − |�−1

(
K
˛

)
| away

rom R˛ (u, v). This means that if we let c = max
{

|�−1
(
K
˛

)
|, |�−1 (  ̨ − K) |

}
> 0 and d = min

{
|�−1

(
K
˛

)
|, |�−1 (  ̨ − K) |

}
> 0, then for

 <  ̨ < 1 + K, R˛ (u, v) is properly contained in M˛ (u, v; z) for every z ∈ R, where

M˛ (u, v; z) =
{

R2 for |z| < c,{
(u, v) ||u − z| > |z| − d or |v − z| > |z| − d

}
for |z| ≥ c.

It follows that for K <  ̨ < 1 + K and for each z ∈ R,

˘˛ (z) < �˛
U (z) ≡ 1

2�

∫ ∫
M˛(u,v;z)

e−
(u−z)2

2 e−
(v−z)2

2 dudv.

It now suffices to show that
∫

0
∞
�˛

U (z)dz and
∫

−∞
0
�˛

U (z)dz are finite. But notice that∫
0

∞
�˛

U (z)dz =
∫

0

c

�˛
U (z)dz +

∫
c

∞
�˛

U (z)dz = c +
∫

c

∞
�˛

U (z)dz.

Meanwhile, for each z > c, �˛
U (z) ≤ 1 − Pr (|u − z| < |z| − d and |v − z| < |z| − d). By bivariate Chebyshev’s Inequality,

r (|u − z| < |z| − d and |v − z| < |z| − d) ≥ 1 − 1+
√

1+Cor(u,v)2

(|z|−d)2 .

Therefore,

�˛
U (z) ≤ 1 +

√
1 + Cor(u, v)2

(|z| − d)2
,

hich is quadratic in z in the denominator and therefore integrates to a finite value over z ∈ [c, ∞).  The integral over z ∈ (−∞, 0] can
ikewise be shown to be finite.22

Now we show the result for Model 3. Although the region of integration is no longer independent of �, constructing a Lebesgue-integrable
ominating function does not require the actual region of integration to be independent of �, but only that the region of integration, for
ufficiently small values of �, can be contained in another region of integration that is in fact independent of �.

As explained in the main text, the trial condition will be determined by the following inequality:

˛

⎛
⎜⎝

∫
y∗

∞
e

− (yp−y)2

2�2 gY (y)dy

∫ ∞ − (yp−y)2

⎞
⎟⎠ −

⎛
⎜⎝

∫
y∗

∞
e

− (yp−y)2

2�2 gY (y)dy

∫ ∞ − (yp−y)2

⎞
⎟⎠> K.
−∞ e 2�2 gY (y)dy −∞ e 2�2 gY (y)dy

22 Under our assumption, of course, Cor (u, v) = 0. But note that the proof goes through even if Cor (u, v) /=  0.
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For a given � > 0, we use the same change of variables: u = yp−y∗
� = y+εp−y∗

� , v = y+εd−y∗
� . Then by setting the dummy variable ω

ppropriately, we can rewrite R˛,� (y; y∗) as{
(u, v) |˛ϕp (u, �) − ϕd

(
v, ˇ�

)
> K

}
= R˛,� (u, v; y∗)

here

ϕp (u, �) =
∫

−∞
u
e−

ω2
2 gY (y∗ + � (u − ω))dω∫

−∞
∞
e−

ω2
2 gY (y∗ + � (u − ω))dω

and ϕd (v, �) =
∫

−∞
v
e−

ω2
2 gY (y∗ + � (v − ω))dω∫

−∞
∞
e−

ω2
2 gY (y∗ + � (v − ω))dω

.

Therefore, for each � > 0,

�˛,� (y; y∗) = 1
2�

∫ ∫
R˛,� (u,v;y∗)

e−
(u−z)2

2 e−
(v−z)2

2 dudv.

Now the region of integration in the uv –plane will continue to depend on � and y∗. But still, we have∫
y∗

∞
�˛,� (y; y∗) gY (y)dy∫

−∞
∞
�˛,� (y; y∗) gY (y)dy

=
∫

0
∞
�˛,� (�z + y∗; y∗) gY (�z + y∗)dz∫

−∞
∞
�˛,� (�z + y∗; y∗) gY (�z + y∗)dz

.

Notice that once we assume � to be sufficiently small (say � < �̄), there will be an absolute lower limit u and an absolute upper limit
¯  such that, for each � such that 0 < � < �̄ and for each y∗ ∈ R, R˛,� (u, v; y∗) is bounded above by v = v̄ and bounded on the left side by

 = u. In other words, for sufficiently small �, the boundary of R˛,� (u, v; y∗) will not go to infinity (negative infinity) even as u approaches

nfinity (v approaches negative infinity). But this is obvious since

∫
−∞

u
e
− ω2

2 gY (y∗+�(u−ω))dω∫
−∞

∞
e
− ω2

2 gY (y∗+�(u−ω))dω

and

∫
−∞

v
e
− ω2

2 gY (y∗+�(v−ω))dω∫
−∞

∞
e
− ω2

2 gY (y∗+�(v−ω))dω

, purely as functions

efined in terms of variable �, are continuous in � at � = 0, and we know the behavior of the boundaries of R˛,0 (u, v; y∗) = R˛ (u, v).
Therefore, once we assume � to be sufficiently small,

�˛,� (�z + y∗; y∗) gY (�z + y∗) <
ḡ

2�

∫ ∫
{(u,v)|u≥u,v≤v̄}

e−
(u−z)2

2 e−
(v−z)2

2 dudv,

here ḡ is the upper bound for gY . This value will eventually decrease at least as fast as |z|−2 as z approaches infinity (or negative infinity). This
s because, as we have done in Proposition 3, we can apply the bounds (based on Chebyshev’s inequality) to the region {(u, v) |u ≥ u, v ≤ v̄}.
onsequently, we can still take the limits inside the integral. Then

lim
�→0+

∫
0

∞
�˛,�(�z + y∗; y∗)gY (�z + y∗)dz∫

−∞
∞
�˛,�(�z + y∗; y∗)gY (�z + y∗)dz

=

∫
0

∞
lim
�→0+

˘˛,�(�z + y∗; y∗)dz∫
−∞

∞
lim
�→0+

˘˛,�(�z + y∗; y∗)dz

ince gY is continuous and strictly positive everywhere. Meanwhile

lim
�→0+

˘˛,�(�z + y∗; y∗) = lim
�→0+

1
2�

∫ ∫
R˛,� (u,v;y∗)

e−
(u−z)2

2 e−
(v−z)2

2 dudv = 1
2�

∫ ∫
lim
�→0+

R˛,� (u,v;y∗)

e−
(u−z)2

2 e−
(v−z)2

2 dudv.

ince lim
�→0+

R˛,�(u, v; y∗) =

⎧⎨
⎩(u, v)|˛

⎛
⎝ lim

�→0+

∫
−∞

u
e
− ω2

2 gY (y∗+�(w−ω))dω

lim
�→0+

∫
−∞

∞
e
− ω2

2 gY (y∗+�(w−ω))dω

⎞
⎠ −

⎛
⎝ lim

�→0+

∫
−∞

v
e
− ω2

2 gY (y∗+�(w−ω))dω

lim
�→0+

∫
−∞

∞
e
− ω2

2 gY (y∗+�(w−ω))dω

⎞
⎠> K

⎫⎬
⎭ , and since each inte-

rand is bounded above by e−
ω2
2 ḡ, which is Lebesgue-integrable, we  can once again take the limits inside the integral and factor out gY (y∗).

nd therefore,

lim
�→0+

R˛,� (u, v; y∗) =

⎧⎨
⎩(u, v) |˛

⎛
⎝ ∫

−∞
u
e−

ω2
2 dω∫

−∞
∞
e−

ω2
2 dω

⎞
⎠ −

⎛
⎝ ∫

−∞
v
e−

ω2
2 dω∫

−∞
∞
e−

ω2
2 dω

⎞
⎠> K

⎫⎬
⎭ =

{
(u, v) |˛� [u] − � [v] > K

}
= R˛ (u, v) .
Therefore,

lim
�→0+

�˛,� (�z + y∗; y∗) = 1
2�

∫ ∫
R˛(u,v)

e−
(u−z)2

2 e−
(v−z)2

2 dudv = � (z)
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nd

lim
�→0+

∫
0

∞
�˛,�(�z + y∗; y∗)gY (�z + y∗)dz∫

−∞
∞
˘˛,�(�z + y∗; y∗)gY (�z + y∗)dz

=

∫
0

∞
lim
�→0+

˘˛,�(�z + y∗; y∗)dz∫
−∞

∞
lim
�→0+

˘˛,�(�z + y∗; y∗)dz
=

∫
0

∞
�(z)dz∫

−∞
∞
�(z)dz

.

We now show the result for Model 2 when  ̨ > 1 + K . Note that∫
0

∞
�˛ (z) gY (�z + y∗)dz∫

−∞
∞
�˛ (z) gY (�z + y∗)dz

=
∫

0
∞
�˛ (z) gY (�z + y∗)dz∫

−∞
0
�˛ (z) gY (�z + y∗)dz +

∫
0

∞
�˛ (z) gY (�z + y∗)dz

.

Here lim
�→0+

∫
−∞

0
�˛ (z) gY (�z + y∗)dz =

∫
−∞

0
�˛ (z) gY (y∗)dz as before, since R˛ (u, v) is bounded by a left asymptote. Meanwhile, we

annot apply Lebesgue’s Dominated Convergence Theorem to
∫

0
∞
�˛ (z) gY (�z + y∗)dz because R˛ (u, v) contains all of the increasing large

ectangles. Instead, we write∫
0

∞
�˛ (z) gY (�z + y∗)dz =

∫
0

∞
(1 − 	˛ (z)) gY (�z + y∗)dz =

∫
0

∞
gY (�z + y∗)dz −

∫
0

∞

˛ (z) gY (�z + y∗)dz

here 
˛ (z) = 1
2�

∫ ∫
R˛
C (u,v)

e−
(u−z)2

2 e−
(v−z)2

2 dudv and R˛
C (u, v) is the complement of R˛ (u, v). Then we  can apply Lebesgue’s Dominated Con-

ergence Theorem to
∫

0
∞

˛ (z) gY (�z + y∗)dz since the integral over the complement of R˛ (u, v) can now be bounded above. Therefore,

lim
�→0+

∫
0

∞
˘˛(z)gY (�z + y∗)dz∫

−∞

∞
˘˛(z)gY (�z + y∗)dz

= lim
�→0+

∫
0

∞
gY (�z + y∗)dz −

∫
0

∞
	˛(z)gY (�z + y∗)dz∫

−∞

0

�˛(z)gY (�z + y∗)dz +
∫

0

∞
gY (�z + y∗)dz −

∫
0

∞
	˛(z)gY (�z + y∗)dz

=

(
lim
�→0+

∫
0

∞
gY (�z + y∗)dz

)
−
(

lim
�→0+

∫
0

∞
	˛(z)gY (�z + y∗)dz

)
(

lim
�→0+

∫
0

∞
gY (�z + y∗)dz

)
+
(

lim
�→0+

∫
−∞

0

�˛(z)gY (�z + y∗)dz

)
−
(

lim
�→0+

∫
0

∞
	˛(z)gY (�z + y∗)dz

)

=

(
lim
�→0+

∫
0

∞
gY (�z + y∗)dz

)
− gY (y∗)

∫
0

∞
	˛(z)dz(

lim
�→0+

∫
0

∞
gY (�z + y∗)dz

)
+ gY (y∗)

∫
−∞

0

˘˛(z)dz − gY (y∗)

∫
0

∞
	˛(z)dz

ince lim
�→0+

∫
0

∞
gY (�z + y∗)dz = lim

�→0+
1−GY (y∗)

� = ∞,  while all other terms are finite, the limit value of the plaintiff win  rate is 1.

When  ̨ = 1 + K , Lemma  A1 tells us that the boundary of R˛ (u, v) in the first quadrant is characterized by an asymptote with a slope
f 1, and the boundary approaches it monotonically. Note further that from Lemma  A1, we must have �˛ (z) ≥ �˛ (0) > 0 for all z. This is
ecause �˛ (0) is equivalent to taking the double integral centered at (z, z) over a region that corresponds to R˛ (u, v) translated by (z, z),
hich would be wholly contained in the original R˛ (u, v). Therefore,∫

0

∞
�˛ (z) gY (�z + y∗)dz ≥

∫
0

∞
�˛ (0) gY (�z + y∗)dz = �˛ (0)

∫
0

∞
gY (�z + y∗)dz.

As shown above, lim
�→0+

∫
0

∞
gY (�z + y∗)dz = ∞.  Thus, the rest follows as before, and the limit value is 1.

Finally, the logic from the first half of the proof applies to lead to the same results (for  ̨ > 1 + K) under Model 3. �

Proof of Proposition 4. Proposition 4 follows directly from Proposition 1 and Proposition 3. �

Proof of Proposition 5. Proposition 5 follows directly from Proposition 2 and Proposition 3. �

Proof of Proposition 6. Without loss of generality, assume gY (y) is centered around 0. Since gY (y) is log-concave, (i) it is also single-
eaked (including the possibility of a flat-top) and (ii) its cumulative distribution, GY (y), is also log-concave. Without loss of generality,
uppose y∗ < 0. In that case,

∫
y∗

∞
gY (y)dy > 1

2 . Then we need to show that |W� (y∗) − 1/2| <
∫
y∗

∞
gY (y)dy − 1

2 . First notice W� (y∗) > 1
2 .

his can be seen as follows. W� (y∗) over all of gY (y) is greater than W� (y∗) over a symmetric image of gY (y) |y≤y∗ around y∗. The latter graph
ies completely under gY (y) because gY (y) is symmetric and single-peaked. And clearly, W� (y∗) = 1 over a symmetric image of gY (x) |x≥y∗
2
round y∗. Thus, we need only show

∫
y∗

∞
gY (y)dx > W� (y∗) . This is equivalent to showing∫

y∗
∞
gY (y)dy∫

−∞
∞
gY (y)dy

=
∫
y∗

∞
gY (y)dx > W� (y∗) =

∫
y∗

∞
�� (y; y∗) gY (y)dy∫

−∞
∞
�� (y; y∗) gY (y)dy

.
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This inequality rearranges to ∫
−∞

y∗
�� (y; y∗) gY (y)dy∫
−∞

y∗
gY (y)dy

>

∫
y∗

∞
�� (y; y∗) gY (y)dy∫
Y∗

∞
gY (y)dy

.

By changing the variable to y = y∗ − w for the left-side integral and y = y∗ + w for the right-side integral and recognizing that �� (y; y∗)
s symmetric around y∗, we have

0

∞
��(y∗ − w ; y∗)

(
gY (y∗ − w)∫

0
∞
gY (y∗ − w)dw

)
dw =

∫
0

∞
��(y∗ + w ; y∗)

(
gY (y∗ − w)∫

0
∞
gY (y∗ − w)dw

)
dw >

∫
0

∞
��(y∗ + w ; y∗)

(
gY (y∗ + w)∫

0
∞
gY (y∗ + w)dw

)

ince �� (y∗ + w; y∗) is strictly decreasing in w, we need only show

(
gY (y∗+w)∫

0

∞
gY (y∗+w)dw

)
as a probability density function defined over [0, ∞)

rst-order stochastically dominates

(
gY (y∗−w)∫

0

∞
gY (y∗−w)dw

)
. Equivalently, we need to show

∫
0

w
gY (y∗−w)dw∫

0

∞
gY (y∗−w)dw

>

∫
0

w
gY (y∗+w)dw∫

0

∞
gY (y∗+w)dw

for all w > 0, or

GY (y∗) − GY (y∗ − w)
GY (y∗)

>
GY (y∗ + w) −  GY (y∗)

1 − GY (y∗)
= (1  − GY (−y∗ − w)) − (1 − GY (−y∗))

GY (−y∗)
= GY (−y∗) − GY (−y∗ − w)

GY (−y∗)

ince 1 − GY (x) = GY (−x) for all x. Since −y∗ > y∗, it now suffices to show that GY (y∗)−GY (y∗−w)
GY (y∗) = 1 − GY (y∗−w)

GY (y∗) is decreasing in y∗, or that
GY (y∗−w)
GY (y∗) is increasing in y∗ for each w > 0. Under the Quotient Rule, this is true if

GY (y∗) gY (y∗ − w) − gY (y∗)GY (y∗ − w) =  GY (y∗)GY (y∗ − w)
(
gY (y∗ − w)
GY (y∗ − w)

− gY (y∗)
GY (y∗)

)
> 0

hich holds if gY (y∗)
GY (y∗) is decreasing in y∗, or put differently, if GY (y∗) g′

Y (y∗) < (gY (y∗))2. But this last inequality holds since GY (y) is strictly
og-concave (which must be true since gY (y) is log-concave).

Meanwhile, for a general log-concave function or a single-peaked function that is not symmetric, the inequality generally will not hold
or all � at the mean (that is, for Y∗ such that GY (y∗) = 1

2 ) since W� (y∗) will not always equal 1/2. For a symmetric counter example, consider

Y (y), which equals zero everywhere but takes on the value of 1 on
[
y∗ − 1

2 , y∗] and
[
y∗ + B − 1

2 , y∗ + B
]

, where B > 1
2 . This function is

learly symmetric around y = y∗ + B
2 . Then

∫
y∗

∞
gY (y)dy = 1/2. But in this case, plaintiff trial win rate is

=
∫
y∗+B− 1

2

y∗+B
�� (y; y∗)dy∫

y∗− 1
2

y∗
�� (y; y∗)dy +

∫
y∗+B− 1

2

y∗+B
�� (y; y∗)dy

.

By Chebyshev’s Inequality, the numerator can get arbitrarily small as B increases, while the denominator maintains a certain minimum
alue. Hence the plaintiff trial win rate can get arbitrarily small, even though the win rate if all cases had gone to trial would have been 1/2.
lthough this counter-example violates Assumption A1, it is possible to create a continuous gY (y) which can arbitrarily closely approximate

his counter-example. �

Next, we discuss Priest and Klein’s assumption that the plaintiff always has a credible threat to go to trial. Whether relaxing this
ssumption makes a difference depends on how plaintiff credibility is incorporated into the model. We  sketch two potential ways to
ddress this concern. Under both, the results proved in this article remain valid. Nevertheless, both approaches have problems, and a more
n-depth analysis, such as Nalebuff (1987), is warranted.

One approach is to assume away the existence of non-credible threats by specifying that even the weakest plaintiff has probability of
revailing Cp/J.  Although this is an unrealistic assumption, it is an approach taken in most asymmetric information models of litigation
see, e.g., Bebchuk, 1984; Reinganum and Wilde, 1986; Shavell, 1996). For example, suppose that if y < y∗, the plaintiff’s probability of
revailing is Cp/J rather than zero, and if y > y∗, the plaintiff’s probability of prevailing is 1 − Cd/J rather than 1. Then all of the results in the
aper remain valid if Cp = Cd. The assumption that if y > y∗, the plaintiff’s probability of prevailing is 1 − Cd/J, is necessary to ensure that
he defendant, in turn, has a credible threat to defend. If damages are certain (as in this and most other litigation models), then a rational
efendant would default if the probability of prevailing were higher than 1 − Cd/J (see Hubbard, 2016). The assumption that Cp = Cd simply
eans that plaintiff’s and defendant’s litigation costs are equal, which is roughly true.

An alternative approach to non-credible threats is to assume that potential disputes for which plaintiff does not have a credible threat
i.e., Pp < Cp/J)  exist, but that plaintiffs does not bring those cases, so they neither settle nor litigate. Under this approach, as long as

 = C−S
J ≥ Cp/J,  the plaintiff trial win rate will be unaffected, because cases in which the plaintiff’s threat is not credible would never

ave gone to trial anyway. The litigation condition, Pp − Pd >
C−S
J already implies Pp > K . So, cases for which the credibility constraint is

inding have no effect on plaintiff trial win rates. It is reasonable to assume that K = C−S
J ≥ Cp/J, because settlement costs, S, are generally

hought to be much less than half the cost of litigation, C, and plaintiff’s litigation costs, Cp, are roughly half of total litigation costs, C.
hile this approach is appealing, it has two drawbacks. First, a rational plaintiff might bring cases not satisfying the credibility constraint,
f it knew that all such cases would settle, as assumed in the model. The plaintiff’s decision to sue will depend, in part, on whether the
efendant would go to trial when a positive settlement for less than defendant’s litigation costs would be in defendant’s interest. Second,

f the plaintiff did not bring such cases, the defendant would rationally take that into account when estimating the probability that the
laintiff will prevail. This updating would require extensive modification of the model.
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