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This article explores the selection of disputes for litigation in a setting with two-

sided incomplete information and correlated signals. The models analyzed here

suggest that Priest and Klein’s conclusion that close cases are more likely to go

to trial than extreme cases remains largely valid when their model is interpreted

as involving correlated, two-sided incomplete information and is updated (i) to

incorporate take-it-or-leave-it offers or the Chatterjee–Samuelson mechanism, (ii)

to take into account the credibility of the plaintiff’s threat to go to trial, and (iii)

to allow parties to make sophisticated, Bayesian inferences based on knowledge of

the distribution of disputes. On the other hand, Priest and Klein’s prediction that

the plaintiff will win 50% of litigated cases is sensitive to bargaining and parameter

assumptions. (JEL: K40, K41)

1. Introduction

This article examines the selection of disputes for litigation in a set-
ting where the litigants have correlated two-sided incomplete information
regarding the merit of their dispute. Although legal scholars have been
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Litigation and Selection 383

studying litigation, settlement, and selection for over three decades, set-
tings involving two-sided incomplete information and correlated signals
have not been analyzed rigorously.

The vast majority of the existing litigation and settlement models involve
one-sided asymmetric information. In these models, one party—which may
be either the plaintiff or the defendant—is fully informed about the prob-
ability that the plaintiff will prevail if the case were to go to trial, and
the other party knows only the distribution of suits. Ordinarily, one party
makes a take-it-or-leave-it settlement offer. Depending on the model, the
party making the offer can be either the uninformed party (screening) or
the informed party (signaling). P’ng (1983), Bebchuk (1984), Reinganum
and Wilde (1986), Nalebuff (1987), Reinganum (1988), Shavell (1996), and
Spier (1992). Under these models, cases that favor the informed party are
more likely to be litigated. So, for example, if the defendant has private
information about liability and hence the likelihood that he will lose at trial,
cases the defendant is more likely to win are more likely to be litigated.

The informational disparity assumed in one-sided asymmetric informa-
tion models is extreme and unrealistic. In most suits, both parties will
possess some information relevant to the likelihood that the plaintiff will win
at trial. For example, in a suit for discrimination by a terminated employee,
the plaintiff might have better information about how she was treated by
her supervisor, while the employer might have better information about her
performance relative to other workers. Both treatment and performance will
be relevant to the employer’s liability.

A small number of models have analyzed two-sided incomplete
information. Most of them assume that the plaintiff’s and defendant’s
information are independent from one another.1 See Schweizer (1989),
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1. In most of the literature, the signals are independent unconditionally, but corre-
lated conditional on the underlying state. For example, in Friedman and Wittman (2007),
the signals are independent draws from the same distribution, but the “true” state is the
average of the signals, so the signals are correlated conditional on the underlying true
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Daughety and Reinganum (1994), and Friedman and Wittman (2007). But
seeYousefi and Black (2016). In reality, however, there is likely to be a high
correlation between the parties’ information. In any dispute, the plaintiff’s
and the defendant’s information will frequently overlap to a considerable
degree. While each side may have better information about some things,
the other side usually has some relevant knowledge of those topics. In the
employment discrimination example, the plaintiff likely knows something
about her performance relative to other workers, and the defendant can inter-
view the supervisor and thereby learn about how the plaintiff was treated.
While there may still be much that one party knows that the other does not,
their overall assessments of case merit are likely to be highly correlated.
As discussed in the next section, the selection implications of two-sided
incomplete information models have not been rigorously explored.

An early model that can be interpreted as featuring two-sided correlated
signals is Priest and Klein (1984), which famously hypothesizes that the
plaintiff trial win rate will have a tendency to approach 50%.2 In their model,
case merit is represented as a real number, and the plaintiff prevails at trial
if and only if this value is above some threshold. Each litigant, however,
observes case merit with a normally distributed error and must make a
prediction about the true case merit based on her signal. Although Priest and
Klein’s model provides an information structure that has intuitive appeal,
the model has been criticized for lacking rigorous treatment of information
and bargaining. Indeed, the model is silent about how the parties bargain
and thus about whether and how each party learns about the other’s signal.
Furthermore, the Priest–Klein model assumes that the plaintiff always has a
credible threat to take a case to trial, even when its probability of prevailing
is extremely low.

state. Conversely, in this paper, the signals are the underlying state plus an error term
which is independent for each party. Thus, the signals are correlated unconditionally,
but independent conditional on the underlying state. When the signals are correlated
unconditionally, each party can make inferences about the other’s signal based on its
own signal. That is not possible when the signals are independent unconditionally.

2. Whether Priest and Klein (1984) is best interpreted as involving a common
prior or inconsistent priors (divergent expectations) is discussed extensively in Section
2 of Lee and Klerman (2016). In this article, we adopt the common prior approach, but,
as pointed out in Lee and Klerman (2016), results are very similar when one adopts the
inconsistent prior interpretation.
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This article attempts to fill the gap in the literature and explores the selec-
tion implications of a rigorous model with correlated two-sided incomplete
information.3 Our strategy is to begin with the correlated two-sided informa-
tion structure from Lee and Klerman (2016) and then model bargaining with
(i) take-it-or-leave-it offers or (ii) the Chatterjee-Samuelson mechanism. In
addition, we improve Priest and Klein’s model in two ways: (i) we consider
the credibility of the plaintiff’s threat to go to trial and (ii) we allow litigants
to be sophisticated Bayesians who make inferences by taking the underlying
distribution of disputes into account. See Lee and Klerman (2016).

A key result in most equilibria we identify and analyze is that extreme
cases—those where the defendant’s conduct is much better or worse than
legally required—are more likely to settle and close cases are more likely to
go to trial.4 This result contrasts with the findings under one-sided asymmet-
ric information models, where extreme cases that favor the informed party
are more likely to litigate. Part of the reason for observing this difference is
that our model uses fact or case space—rather than probability space5—and
that the parties’ signals are correlated. In Bebchuk (1984) and Reinganum
and Wilde (1986) case type is the probability that the plaintiff will prevail.

3. Yousefi and Black (2016) set out a simple model with correlated, two-sided
information, but their model lacks features that modern models of litigation are expected
to have. Most notably, the party receiving an offer does not update its beliefs based on
the offer, even though the offer conveys information about the offeror’s beliefs. See p.
186, n. 8. Wittman (1985) considers a similar model, but his model, like Priest and Klein
(1984) and Lee and Klerman (2016) does not assume a particular bargaining protocol, but
instead assumes parties settle whenever the plaintiff’s expected gain from trial exceeds
defendant’s expected loss.

4. The exception is asymmetric Nash equilibria under the Chatterjee–Samuelson
mechanism. See Section 4.2.

5. In fact space, disputes are distributed over the entire real line, and case merit—
the factual strength of each dispute for the plaintiff—is represented by a real number
between negative infinity and positive infinity. In the Priest–Klein model and the updated
version used in this article, the plaintiff wins with certainty or probability θH if the
case merit is greater than or equal to some threshold value and loses with certainty or
probability 1 − θL otherwise.Although the parties’estimates of the plaintiff’s probability
of prevailing vary continuously with case strength, the objective probability of prevailing
takes only two values. In probability space, case merit is represented by a real number
between 0 and 1 (inclusively), where the number represents the probability that the
plaintiff will prevail at trial. Because of the binary nature of fact space translation of the
model into probability space would require drastic changes. For an attempt to analyze
the Priest–Klein model in probability space, see Hylton and Lin (2012). If the probability
of plaintiff win at trial varied continuously over fact space, translation between the two
spaces might be possible.
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In contrast, in this article, as in Priest and Klein (1984), case type is facts that
indicate how close the defendant’s conduct was to the legal standard. This
approach is consistent also with Kornhauser (2008), in which a legal rule
maps a vector of characteristics into liability or no liability. An advantage
of this approach is that it makes possible unbiased errors of constant mag-
nitude. When cases are represented in probability space, it is not possible to
assume unbiased and positive errors at or near zero and one, because then
parties’ estimates of the probability that the plaintiff would prevail might
fall below zero or exceed one, which is impossible.6 In contrast, a case in
fact space can take on any real value, so errors can be positive and unbiased.

A simple example illustrates why selection is toward close cases in a
case-space model with correlated information. In a traffic accident case, case
type might be how fast the defendant was driving, and the legal standard
might be the speed limit. If the speed limit was 30 miles per hour, the
driver would be liable if her speed exceeded that amount. The plaintiff
and defendant each receive correlated signals of how fast the defendant
was going. The defendant’s signal might reflect her own recollection of the
speed on her speedometer the last time she looked before the crash as well
as other information gathered from witnesses and physical evidence. The
plaintiff’s signal might reflect his visual assessment of the defendant’s speed
as well as witness and physical evidence. Because all the evidence reflects
the common underlying reality (the true speed of the car), and because much
evidence is common, the signals are correlated. Of course, neither signal
is likely to be completely accurate, so both signals reflect the true speed
plus some error, which might usually be within 5 miles per hour of the true
speed. In this scenario, it is easy to see that extreme cases—cases where
the defendant’s speed was well above or below the 30-mile-per-hour speed
limit—will rarely litigate. Suppose, for example, that the defendant’s true
speed was 50 miles per hour, an extreme case where defendant’s conduct
was far from the legal standard. Even with errors in their favor, the parties
are likely to agree that the defendant is almost certain to be held liable.
Even if the defendant’s signal is 5 miles per hour too low, the defendant
estimates her speed to be 45 miles per hour, so the defendant still thinks that

6. Others have tried to work around this problem by assuming heteroscedastic
errors across probability space. See, for example, Hylton and Lin (2012).
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she violated the speed limit by 15 miles per hour and thus estimates that she
will be held liable with very high probability. Even if the plaintiff’s signal
is 5 miles per hour too high, the error will not result in a significantly higher
estimate of liability, because the defendant has significantly exceeded the
speed limit whether she was going 45 miles per hour or 55 miles per hour.
Thus, the plaintiff and the defendant are likely to agree that plaintiff will
prevail with high probability and thus be able to negotiate a settlement.
Similarly, if both parties receive signals that suggest that the defendant was
traveling well below the speed limit, they will agree that liability is unlikely,
and will negotiate a low settlement. Only when the defendant’s speed is close
to the speed limit (30 miles per hour) is significant disagreement and thus
failure to settle likely. For example, if defendant’s true speed is 30 miles per
hour, the plaintiff might receive a signal suggesting that defendant’s speed
was 35 miles per hour, while defendant might receive a signal suggesting
that she was traveling 25 miles per hour. In that situation, the plaintiff would
think his case is strong, while the defendant would think she was likely to
be exonerated at trial. In such a close case, settlement negotiations would
likely fail, and the case would go to trial. Thus, litigation is only likely in
close cases (where actual speed is close to the speed limit), and settlement
is more likely in extreme cases (where speed is much higher or lower than
the speed limit).

Although our conclusion that close cases will tend to go to trial and
extreme cases will tend to settle is similar to Priest and Klein’s original
conclusion, the results of the models explored here also differ from theirs
in important ways. In the take-it-or-leave it model, even though only close
cases are likely to go to trial, we find that the plaintiff trial win rate can
deviate significantly from 50%. This is because the party making the offer
is able to use its bargaining power to settle favorably nearly all cases it is
likely to lose and litigate only cases it is more likely to win. For example, if
the plaintiff makes the take-it-or-leave-it offer, nearly all cases the plaintiff
is likely to lose settle, as do cases that the plaintiff is very likely to win. But
an intermediate range of cases—where the plaintiff is likely, but not highly
likely to prevail—will go to trial. As a result, the plaintiff trial win rate is
over 50%. More generally, the trial win rate will favor the party making the
offer. When the defendant is making the offer, the plaintiff trial win rate
will be less than 50%.
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One take-away of our results is that one should be cautious about making
inferences about the strength of the cases selected to go to trial based on
observed win rates. Even if one side wins most of the cases, this does not
mean that the evidence or law in litigated cases strongly favors that side.
Instead, it could mean that close cases litigate, but that the evidence or law
in those cases usually slightly favors one side.

In the model using the Chatterjee–Samuelson mechanism, we establish
the existence of a number of different classes of Nash equilibria. The pres-
ence of multiple equilibria with contrasting selection implications makes
predictions about plaintiff trial win rates difficult. Nonetheless, if we assume
the plaintiff and the defendant face identical litigation costs and employ
symmetric strategies—in other words, if the plaintiff and the defendant are
assumed to be equally aggressive in their settlement demands when they
are equally confident that the outcome will favor their sides, respectively—
we find that close cases are more likely to go to trial, and, under some
parameter assumptions, that the plaintiff trial win rate will be 50%. In
contrast, in asymmetric equilibria, where one party is more aggressive in
its settlement demands, plaintiff trial win rates can deviate substantially
from 50%.

The rest of this paper is organized as follows. Part 2 provides an overview
of the relevant literature on litigation and settlement as it bears on the issue
of selection. Part 3 presents a model with take-it-or-leave-it offers, and Part
4 explores the implications of using the Chatterjee–Samuelson mechanism.
Part 5 concludes. An Appendix includes the proofs of all propositions as
well as the technical expositions of the models, and an Online Appendix
includes proofs of lemmas necessary to establish Proposition 1.

2. Related Literature

Legal scholars have been studying the selection implications of litigation
for over three decades. Priest and Klein (1984) argued that the disputes
selected for trial will not be a random set, but will tend to be close cases.
Relying on a graphical argument and simulations, they also hypothesized
that there will be a “tendency toward 50 percent plaintiff victories” among
litigated cases (p. 20). Lee and Klerman (2016) formalize Priest and Klein’s
model and prove that the 50% prediction and a number of other hypotheses
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derived from Priest and Klein (1984) are mathematically valid given the
model’s set-up. But see Klerman and Lee (2014).

Priest and Klein’s prediction that close cases will tend to go to trial
contrasts with the selection implications of the canonical one-sided screen-
ing and signaling models. See Waldfogel (1998). In one-sided asymmetric
information models, cases the informed party is more likely to win are
more likely to be litigated. See Wickelgren (2013) and Klerman and Lee
(2014). Under Bebchuk’s screening model, the uninformed party makes a
take-it-or-leave-it offer, and there is a cutoff that divides cases according
to the informed party’s type, which is the probability that the plaintiff will
prevail at trial. All cases on one side of the cutoff settle, and all cases on
the other side litigate. In Bebchuk’s original model, the defendant is the
informed party, and thus, only the cases in which the plaintiff’s probability
of prevailing is less than a certain threshold go to trial. Bebchuk’s model
can be modified for a setting in which the plaintiff is the informed party,
and in that case, all cases in which the plaintiff’s probability of prevailing
is greater than a certain threshold go to trial. See Klerman and Lee (2014).
Thus, under the screening model, it is not close cases, but rather cases that
favor the informed party—including extreme cases—that go to trial.

Under Reinganum and Wilde’s (1986) signaling model, there is no lit-
igation/settlement cutoff, but the probability that a case will be litigated
varies continuously and monotonically with the strength of the plaintiff’s
case. If the plaintiff is the informed party, cases with higher expected value
are more likely to be litigated. Conversely, if the defendant is the informed
party, cases with lower expected value are more likely to be litigated. In
Reinganum and Wilde’s model, cases vary in strength based on damages.
Klerman and Lee (2014) modify this model so that cases vary in the likeli-
hood that plaintiff will prevail. Under this modified model, the implication
is not that close cases are litigated, but rather that the closer the case is to
one extreme—the extreme in which the informed party prevails 100% of
the time—the more likely the case will go to trial.

The selection implications of two-sided incomplete information have
not been systematically explored. In Schweizer (1989), the parties receive
independent, binary signals about case merit (good news or bad news), and
the defendant makes a take-it-or-leave-it offer. Schweizer (1989) does not
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discuss the selection implications of his model, and even under the sepa-
rating equilibrium it is not clear whether close cases or cases favoring the
defendant will be litigated more often. Daughety and Reinganum (1994)
analyze a model in which the plaintiff has private information about dam-
ages, while the defendant has private information about liability, where
damages and liability are uncorrelated, and either party makes a take-it-or-
leave-it offer. Although their original article did not explore the selection
implications of the model, it can be shown that, in both the plaintiff-offer
model and the defendant-offer model, the more likely the defendant is to be
found liable, the more likely the case is to be settled. So, like Reinganum
and Wilde (1986)’s signaling model, cases that are extreme—in that the
plaintiff has a very low probability of prevailing—are more likely to be
litigated. On the other hand, the plaintiff is more likely to settle cases where
damages are likely to be low, and thus, the cases selected for trial will tend
to have higher damages but lower probability of defendant liability.7

In Friedman and Wittman (2007), the litigants receive continuous but
independent signals of case strength and then employ the Chatterjee–
Samuelson bargaining mechanism to negotiate. Although case strength
refers to judgment amount rather than the probability that the defendant
will be found liable—the defendant’s liability is assumed in the model—
their model can be modified to analyze a situation involving uncertainty
over defendant liability (Friedman and Wittman, 2007, pp. 109–110). They
restrict their attention to symmetric Nash equilibria and find that the selec-
tion implications of their model are similar to Priest and Klein. Converted
to a model based on defendant liability, Friedman and Wittman’s model

7. In their 2012 survey article, Daughety and Reinganum noted that, under their
1994 model, weak plaintiffs and weak defendants “will be more likely to settle, trimming
the distribution from both ends—again resembling the primary characteristics of the
Priest–Klein approach.” (2012, p. 440). While it is true that both high probability of
liability cases and low damage cases are more likely to be settled, this does not mean
that cases that are middling in terms of expected value are more likely to be litigated. In
the model where the plaintiff makes the offers, the lowest expected value cases (those
where both the plaintiff’s probability of prevailing and damages are low) are litigated and
those with the highest expected value (where both plaintiff’s probability of prevailing
and damages are high) are settled. So, cases that litigate include all the extremely low
expected liability cases. Conversely, when defendant makes the offer, the lowest expected
value cases all settle, and cases with the highest expected liability litigate, again meaning
the extreme cases (now extremely high expected value cases) are more likely to litigate.
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suggests that plaintiffs will prevail 50% of the time in litigated cases.
Their model’s findings, however, depart from Priest and Klein’s predic-
tion because they find that close cases are more likely to be litigated only
when litigation costs are assumed to be high. When litigation costs are low,
they find that extreme cases are more likely to be litigated. Nevertheless,
even when litigation costs are low, plaintiffs still prevail 50% of the time,
because cases in which the plaintiff is very likely to prevail exactly offset
cases in which the plaintiff is very unlikely to prevail.

We believe combining the correlated information structure from Priest
and Klein’s original model with the more modern take-it-or-leave-it or
Chatterjee–Samuelson bargaining protocols makes for a worthwhile inquiry
for several reasons. Waldfogel (1998) documents that data are more con-
sistent with Priest and Klein’s model than with the screening or signaling
models, so it is worthwhile to see whether Priest and Klein’s results hold up
when their model is made more rigorous. In addition, our models show how
the main results of Priest and Klein (1984) will change if we were to take
into account the possibility of negotiation failure and ex post inefficiency.
See Myerson and Satterthwaite (1983).

All in all, the models explored in this article share some similar results
with many of the models discussed above. The result, under most versions
of our model, that close cases are more likely to go to trial is consistent with
Priest and Klein’s model. Likewise, as with Bebchuk (1984) and Reinganum
and Wilde (1986), when one party makes a take-it-or-leave-it offer, litigated
cases favor one side, although, in their models, litigated cases favor the
informed party, whereas in our model litigated cases favor the party making
the offer. The result in the Chatterjee–Samuelson version of our model
that the trial win rate may be 50% and neither side enjoys a first-mover
advantage is consistent with Friedman and Wittman (2007) and Priest and
Klein (1984).

3. The Model with Take-It-or-Leave-It Offers

We begin with the model in Lee and Klerman (2016), which formal-
izes Priest and Klein (1984). Without loss of generality, we normalize the
judgment to 1. That is, if the plaintiff prevails, defendant pays the plaintiff 1.
If the case goes to trial, the plaintiff and the defendant incur litigation costs,
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Cp > 0 and Cd > 0, respectively. Settlement is assumed to be a cost-
less transfer of the settlement amount from the defendant to the plaintiff.8

Because the parties are assumed to agree on damages, this model is most
applicable to disputes where the parties disagree primarily about liability.
For a model with disagreement about damages, see Helland et al. (2018).

The merit of a dispute is represented by a random variable, Y , which takes
on a real number. The real number can be interpreted as factual information
pertaining to the defendant’s liability, such as the speed of defendant’s car
in an accident case. The court observes y, the realization of Y , without error.
Under the original Priest–Klein model, the plaintiff wins if y > 0 and the
defendant wins if y � 0. Thus, y = 0 is the threshold factual disposition
for finding the defendant liable. The threshold could be y = a, where a is
any real number (such as the speed limit), but, without loss of generality,
we normalize to y = 0.

We generalize this set-up slightly by assuming that the plaintiff wins
with probability θH if y > 0 and with probability θL if y � 0, where
0 � θL < θH � 1.9 Therefore, we will say the case is of high merit when
y > 0 and of low merit when y � 0. Note that if (θL, θH ) = (0, 1), then the
set-up is identical to the original Priest–Klein model. The reason we con-
sider θL > 0 is that Priest and Klein’s original specification raises a concern
that the plaintiff who is reasonably certain that y � 0 will lack a credible
threat to take the case to trial. See Lee and Klerman (2016). One possible

8. One can equally assume settlement to entail costs as well, 0 < Sp < Cp and
0 < Sd < Cd , and we would obtain essentially the same results.

9. We note that assuming θL > 0 and θH < 1 presents an interpretation of the
dispute space that is different from Priest and Klein’s original model. Priest and Klein’s
original set-up (under which θL = 0 and θH = 1) represents a fact space, in which the
fact patterns of disputes can range from those in which the defendant’s conduct is far
from problematic (y � 0) to those in which the defendant’s conduct is egregiously bad
(y � 0). The threshold y = 0 in that case would represent the line the court would
draw in finding the defendant liable. This interpretation would need to be modified when
we assume θL > 0 and θH < 1. One interpretation is that θL > 0 and θH < 1 reflect
court error. Even when the defendant’s culpability is insufficient for liability, courts find
the defendant liable with probability θL. Even when the defendant is more culpable than
required for liability, courts sometimes exonerate the defendant, so the probability of
liability is θH < 1. Under this interpretation, Priest and Klein’s model can be seen as
assuming courts make no errors, and this paper can be seen as incorporating the possibility
of court error. Another interpretation is that there are really only two types of cases—
low-merit cases and high-merit cases—and yp and yd represent the extent to which the
parties can be sure that the dispute is of one type or the other.
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approach to address this concern is to assume θL � Cp.10 Such an approach
of assuming that all plaintiffs have a sufficiently high probability of prevail-
ing at trial is similar to the approaches taken by a number of other models to
avoid the problem of non-credible threats. See Bebchuk (1984), Reinganum
and Wilde (1986), and Daughety and Reinganum (1994). But see Nalebuff
(1987) and Baker and Mezzetti (2001). Hubbard (2016) points out that there
is a similar problem with the credibility of the defendant’s threat to defend.
If θH > 1 − Cd , then the defendant would be better off just paying the full
damage without going to trial. Thus, we will also consider the case where
θH � 1 − Cd .

We assume that Y is distributed according to gY (x), which is bounded
above, continuous, and strictly positive. In Section 3.3 we discuss the general
case, but we start in Sections 3.1 and 3.2 by assuming gY (x) is an improper
uniform distribution over the entire real line. In other words, gY (x) = 1 for
all x. While this violates the condition that a probability density function
must integrate to 1, its mathematical properties have been worked out by
Hartigan (1983) and DeGroot (2004), and such a distribution has previously
been used in the global games literature as well as in the context of Priest and
Klein’s model. See Morris and Shin (2003) and Lee and Klerman (2016).
There are two reasons why it will be useful to work with an improper uniform
distribution rather than a normal distribution. First, this simple distribution
allows us to construct an explicit first-order differential equation that will
provide insight as to how the litigants bargain and respond. Second, when
we discuss the case of general distributions in Section 3.3, we find that
the plaintiff trial win rate in the limit—as parties become more accurate
in discerning case merit—approaches the win rate that would obtain if the
distribution were improper uniform. For this reason, we believe our results in
Section 3.3 provide strong reasons to take seriously the case of the improper
uniform distribution.

10. Although this approach to non-credible threats is somewhat arbitrary, it is
closely related to the approaches taken by most other studies in the literature. The more
elegant approach in Nalebuff (1987) would not work here, because, in our model, both
parties receive informative signals. Thus, even with semi-pooling, a plaintiff with a very
weak signal would not have a credible threat to take the case to trial if θL < Cp. While
other approaches could be devised to address this problem, we believe they would further
complicate the model and would distract from the key point of the analysis here, which
is selection, not nuisance suits.
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The litigants, who are risk-neutral, do not observe y. Instead, the plain-
tiff receives a private signal Yp = Y + εp, and the defendant receives
Yd = Y + εd , where εp, εd ∼ N (0, σ 2). Thus, for i = p, d, fYi |Y=y (x) =
ϕσ (y − x), where ϕσ (·) is the normal distribution with mean zero and
standard deviation σ .11 We assume that εp, εd , and Y are independently
distributed. Although the errors are independent of each other, the observed
signals will be correlated, because they both depend on Y . We shall refer
to a plaintiff that observes yp (as the realized value of Yp) as type yp, and a
defendant that observes yd as type yd .

Given signal yi, each litigant can construct the distribution of Y con-
ditional on Yi = yi using Bayes’ rule. Since the distribution of disputes is
uniform over R, it is easy to show that fY |Yi=yi (x) = ϕσ (yi − x) for i = p, d.
See DeGroot (2004, p. 191). Note that this implies that each party will esti-
mate the probability that the case has high merit (y > 0) as greater than
zero but less than one. No party has absolute confidence in the outcome.

The plaintiff can also estimate the expected distribution of Yd conditional
on his observed yp, fYd |Yp=yp(x). This is a compound distribution: the plain-
tiff first estimates the distribution of Y given his yp, and for each y value
estimates the distribution of Yd and compounds the distributions. Therefore,
we have

fYd |Yp=yp (x) =
∫ ∞

−∞
fYd |Y=y (x) fY=y|Yp=yp (y) dy.

Similarly, the defendant can estimate the distribution of true case merit and
of the plaintiff’s signal.

3.1. The Plaintiff-Offer Model under the Improper Uniform
Distribution

We begin with the model in which the plaintiff makes a take-it-or-
leave-it offer to the defendant (the P-model). The implications of having
the defendant make a take-it-or-leave-it offer (the D-model) are explored
in Section 3.2. In the P-model, the plaintiff’s pure strategy, s(·), is a
function that maps her signal yp to a settlement demand, S ∈ R. The

11. Because the context will make it clear, we will not include any subscript in
fYp|Y=y(x) to specify the standard deviation, σ .

D
ow

nloaded from
 https://academ

ic.oup.com
/aler/article-abstract/20/2/382/5113390 by Serials Section N

orris M
edical Library user on 17 January 2019



Litigation and Selection 395

basic idea, as in Daughety and Reinganum (1994), is that the plain-
tiff’s demand signals information about its type. The defendant in turn
accepts or rejects the demand based on its own signal, yd , and informa-
tion about the plaintiff’s type revealed by the plaintiff’s demand. Thus, the
plaintiff signals, and the defendant gets screened. The derivation of the
perfect Bayesian equilibria is quite complicated and is set out in detail
in the Appendix. In the main text, we provide only the intuitions and
results.

Note first that a defendant, regardless of his type, should always accept
a settlement demand of S = Cd + θL. Because the defendant will always
place some positive probability that the case will be of high merit, he should
expect to pay at least that much if the case were to go to trial. Thus, for the
defendant, accepting the settlement demand of S = Cd + θL will always
outperform going to trial in expectation. This indicates two things. First,
from the plaintiff’s perspective, any demand S < Cd + θL will be strictly
dominated by S = Cd + θL. Second, in a fully separating equilibrium that
is everywhere differentiable, we should not observe S = Cd + θL since the
plaintiff’s settlement demand must change (strictly) monotonically with her
type. Because plaintiff types span the real line, there is no minimum plaintiff
type that could offer S = Cd + θL. By a similar argument, we can show that
no defendant will accept a settlement demand greater than Cd + θH —the
highest possible cost the defendant would face—but will prefer to go to
trial. We show in the Appendix that as a result no plaintiff has an incentive
to demand greater than or equal to this amount (see Lemma A1).

As shown in the Appendix, there is neither a complete pooling equilib-
rium nor a fully separating one. Instead, her offer will be semi-pooling in
the following sense. Each plaintiff that receives a sufficiently weak signal
(i.e., below some threshold yp = y0) will demand S = θL + Cd , which
will be accepted by every defendant type. Since the plaintiff is assumed to
have the bargaining power to make a take-it-or-leave-it offer, she can always
extract at least this much in the P-model. In fact, the main reason why a fully
separating equilibrium does not exist in the P-model is that θL + Cd (the
corner solution) turns out to be more lucrative to a weak plaintiff than the
interior solution, which would fully reveal her type to the defendant. When
the plaintiff receives a signal above y0, by contrast, her settlement demand
increases monotonically with her signal, and as a result, the plaintiff’s type
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Figure 1. The Plaintiff’s Optimal Settlement Demand Given the Plaintiff’s Signal,
yp (σ = 1, Cp = Cd = 1/3 = θL = 1 − θH , and c = 0.5, erf(−4)+1

2 ).

will be fully revealed to the defendant. Because it is never rational for any
plaintiff type to demand more than S = θH + Cd , the settlement demands
approach θH + Cd asymptotically as yp increases—as the plaintiff becomes
more and more confident—but will never attain that value.

The monotonically increasing portion of the settlement demand is
determined by an ordinary differential equation stemming from the first-
order condition. As is often the case, the differential equation admits a
one-parameter family of solutions, depending on boundary values.

Figure 1 includes two representative graphs for the plaintiff’s optimal set-
tlement demand under two different boundary values.12 Both graphs exhibit
a jump discontinuity between the flat portion and the monotonically increas-
ing portion, and that will remain true regardless of the boundary value. The
boundary value, s0, can be assigned by specifying what amount the plaintiff
would have demanded under the interior solution13 if she were to observe
yp = 0. Note that when the plaintiff observes yp = 0, she believes her
probability of victory at trial is exactly 50%. s0 can take on any value
strictly between θL + Cd and θH + Cd . Let c = s0−(θL+Cd )

θH −θL indicate where in
this range s0 falls. The value of c will in turn determine how aggressively

12. Figure 1 plots the plaintiff’s optimal demand strategy under the assumption
that θL = 1

3 and Cd = 1
3 . This specification allows each plaintiff to walk away with at

least 2
3 . However, one can also reasonably assume much smaller values of θL and Cd .

Although the flat portion will be lowered in that case, the graphs will remain otherwise
very similar.

13. Note that in equilibrium, for most parameters we consider, a plaintiff who
observes yp = 0 will demand θL +Cd , the corner solution, rather than an interior solution.
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each plaintiff type will make her demand in the separating portion of the
equilibrium and the threshold y0. A low c indicates that the plaintiff, at each
signal, will make relatively low settlement demands, and a high c indicates
that the plaintiff will make relatively aggressive demands. Nevertheless, as
Lemma A5 indicates in the Appendix, the expected value of the plaintiff’s
recovery increases as c decreases. In other words, the plaintiff does better
with less aggressive demands on the whole. (More precisely, the plaintiff
does better with less aggressive demands when the defendant is expecting
less aggressive demands from a plaintiff of a given type.) The defendant is
more likely to accept lower offers, and the saving in litigation costs offsets
the fact that settlements are lower.

The graph in the left panel of Figure 1 assumes c = 0.5, which is
halfway between the two end points. The graph in the right panel assumes
c = erf(−4)+1

2 , which is very close to zero.14 As explained in the Appen-
dix, the range of feasible values of c varies with litigation costs and other
parameters (see Lemma A4). More specifically, we find that when litigation
is expensive (i.e., Cd + Cp � θH − θL so that the parties would collectively
spend at least as much as the total amount at stake in going to trial), then
c can be as close to zero as possible (c, of course, cannot equal zero in a
monotonically increasing equilibrium). Thus, when litigation is expensive,
there is no minimum possible c value. On the other hand, when litigation is
inexpensive (i.e., Cd + Cp < θH − θL), then c has to exceed zero by some
positive amount, and there exists a minimum c value. This analytical result
makes intuitive sense: when litigation is inexpensive, there is a greater value
to going to trial, and therefore, the plaintiff will prefer to go to trial than be
timid in her settlement demand.

We state the main results regarding the perfect Bayesian equilibria.

PROPOSITION 1. Perfect Bayesian Equilibria under the P-Model. In the

P-model, for each
(
Cp, Cd , θL, θH

) ∈ (0, 1)2 × [0, 1) × (0, 1] such that

0 � θL < θH � 1, there is a one-parameter class of semi-pooling perfect

14. We chose c = erf(−4)+1
2 to illustrate plaintiff behavior when c is close to zero

because for this value of c the plaintiff’s optimal settlement demand curve is well-defined
for every plaintiff type for all (θL, θH ) we consider in Table 1. See Lemma A4(b). To the
extent that a smaller value of c can lead to a fully-defined plaintiff demand curve for
some (θL, θH ), the curve will look substantively similar to the case we plotted.
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Bayesian equilibria, each of which satisfies the following. First, the plaintiff

demands Cd + θL for all yp � y0 (where y0 is the unique yp value at which

the expected utility of the plaintiff observing yp and demanding accord-

ing to the interior solution would equal Cd + θL).15 Second, the plaintiff’s

demand is characterized by a jump discontinuity at yp = y0 and increases

continuously for yp > y0. The defendant holds the following beliefs: for

S ∈ (Cd+θL, Cd+θH ), the defendant has a point belief that is consistent with

the interior optimal demand strategy; for S = Cd +θL the defendant’s belief

is a truncated normal probability distribution, which is zero for yp > y0

but takes on
ϕ1

( yp−yd√
2σ

)
√

2σ�
(

y0−yd√
2σ

) for yp � y0, where �(·) is the standard normal

cumulative distribution function; for S ∈ (−∞, Cd + θL) ∪ [Cd + θH , ∞),
virtually any belief is possible because this strategy is strictly dominated

for all plaintiff types.

The presence of multiple equilibria poses a challenge in terms of using
this model to predict equilibrium behavior. In litigation and settlement mod-
els with signaling, a plausible assumption regarding the sender’s behavior
at an end point of type space (e.g., the lowest sender type) can provide an
argument for pinning down a specific boundary condition. See Reinganum
and Wilde (1986) and Daughety and Reinganum (1994). This line of argu-
ment, however, is unavailable under our set-up because there are no end
points to the real line.

One possible approach is to see whether some of the equilibrium refine-
ment criteria may be used to eliminate certain equilibria. As we show in the
Appendix (Lemma A7), the two most frequently invoked criteria—Cho and
Kreps (1987)’s “intuitive” criterion and Banks and Sobel (1987)’s D1—are
not helpful in this regard: every boundary value equilibrium survives the
“intuitive” criterion but fails the D1 criterion.16 On the other hand, we also

15. We assume that if the plaintiff is indifferent between demanding θL + Cd or
some amount greater than this value, then she will demand θL + Cd .

16. It is unclear whether a perfect Bayesian equilibrium which survives D1 will
exist in our game. The general existence result established by Banks and Sobel (1987)
does not extend to our game for two reasons: (i) type spaces are unbounded in our game
and (ii) we restrict our attention to pure-strategy equilibria. These two factors imply that
the convexity condition necessary to establish the existence result will be violated. We are
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show that the equilibrium corresponding to the minimum possible bound-
ary value is the unique “undefeated” equilibrium in the sense similar to one
defined in Mailath et al. (1993).17 In particular, we show that given two
boundary values s0 < s′

0, the s0-equilibrium “defeats” the s′
0-equilibrium.

Relatedly, we also noted that the expected utility of every plaintiff type
decreases in s0. In other words, from the plaintiffs’ (e.g., senders’) perspec-
tive, given s0 < s′

0, the s0-equilibrium will dominate the s′
0-equilibrium.18

For these reasons, in the case of inexpensive litigation, it may make sense
to focus on the equilibrium corresponding to the lowest c. This will also
correspond to the maximally separating equilibrium. In the case of expen-
sive litigation (which has no lowest possible c), it may make sense to study
how the equilibrium behavior changes as we let c approach 0.

It is also helpful to examine the probability of rejection a plaintiff (of a
certain type) faces in making a particular settlement demand. In the canoni-
cal one-sided signaling game by Reinganum and Wilde (1986), the plaintiff
possesses private information regarding the extent of damages and makes a
settlement demand that is monotonically increasing. The defendant observes
the settlement demand and randomizes between accepting the offer and
rejecting the offer. Because the probability of the defendant’s rejection
increases in the plaintiff’s settlement demand amount, a low-damage plain-
tiff (who has less to gain from going to trial) is not incentivized to mimic a
high-damage plaintiff, and there exists a fully separating equilibrium.

In our model, given the plaintiff’s equilibrium strategy, each defendant
will accept all offers below a certain threshold, according to his type, and
reject those above it. In calculating this optimal threshold, the defendant
takes into account both his own signal and the information conveyed
by the plaintiff’s offer. As a result, for each settlement demand amount,

unaware of any theorem extending Banks and Sobel (1987)’s result to games featuring
these two factors.

17. As we discuss in the Appendix, the definition of the “undefeated” refinement
has to be modified to fit our game because, once the respective signals are observed, the
parties no longer have a common prior regarding the plaintiff type distribution.

18. Given that the plaintiff is the one making the offer, there is an argument
for choosing the value of s0 giving the plaintiff the maximum expected payoff. If the
plaintiff has sufficient bargaining power that it can make take-it-or-leave-it offers, it
seems reasonable to assume that it has the bargaining power to select the most favorable
equilibrium as well. See Bernardo and Talley (1996).
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Figure 2. The Probability of Rejection Given Demand S (σ = 1, Cp = Cd = 1/3 =
θL = 1 − θH , and c = erf(−4)+1

2 ).

some defendants (below a certain threshold yd) will accept, and others
(above the threshold yd) will choose to go to trial. Therefore, although
the defendant’s strategy is pure and involves no mixing or random ele-
ment, because the defendant bases his decision not only on the plaintiff’s
settlement demand but also on his own information about the case merit,
the defendant’s response will appear to the plaintiff as if the defendant
were relying on a mixed strategy: for every settlement demand greater
than θL + Cd , the probability that the defendant will accept lies strictly
between zero and one. Furthermore, because this probability of rejection
will depend on the plaintiff’s estimate of the defendant type distribution
given the plaintiff’s own signal, each plaintiff type faces a different prob-
ability of rejection for her settlement demand. For this reason, we will
call it the plaintiff’s subjective probability of rejection for each settlement
demand S.

Figure 2 graphs the subjective probability of rejection each plaintiff cal-
culates for her settlement demand, S, and signal, yp. Regardless of plaintiff
type, a plaintiff who demands less than or equal to θL + Cd can expect
this probability to be zero. Likewise, a plaintiff who demands θH + Cd or
higher can expect this probability to be one. For intermediate demands, as
one would expect, the probability that defendant will reject a settlement
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Figure 3. Litigation Probability Function for the P-Model (σ = 1, Cp = Cd =
1/3 = θL = 1 − θH , and c = erf (−4)+1

2 ).

demand increases with the amount demanded.19 See Reinganum and Wilde
(1986). The subjective probability of rejection also varies across the plain-
tiff’s signals because the plaintiff’s and defendant’s signals are correlated.
When the plaintiff receives a high signal, the defendant is also likely to
receive a high signal, which makes the defendant more likely to accept the
offer, because a high signal means that the defendant is more likely to be
liable.

We now consider the selection implications of the P-model. The combi-
nation of the plaintiff and the defendant strategies, sketched above, can be
used to calculate the objective probability that a case of given merit, y ∈ R,
will go to trial. Given a case of merit y, we can calculate the probability
distribution of the pair of signals (yp, yd) ∈ R2. Given the plaintiff’s demand
strategy and the defendant’s response function, it is then possible to deter-
mine whether each pair of signals will lead to a trial or not. By aggregating
this analysis across all possible pairs according to the framework provided
in Lee and Klerman (2016), we can calculate the objective probability of
going to trial for each y.

The result is shown in Figure 3. The horizontal axis is case merit, and the
vertical axis is the probability of litigation. Since the threshold for liability

19. As we show in the Appendix (Lemma A9), the graphs are discontinuous at
S = θL + Cd and at S = θH + Cd .
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was (without loss of generality) assumed to be y = 0, all cases to the right
of the vertical axis are high merit cases and will result in judgments for the
plaintiff with probability θH . Conversely, all cases to the left of the vertical
axis are low merit cases and will result in judgments for the plaintiff with
probability θL. The probability of litigation peaks for cases where case merit
is close to zero. Since the threshold for liability is y = 0, this means that
close cases (cases where the true case merit is close to the threshold for
liability) are more likely to be litigated. Nevertheless, the probability of
litigation does not peak exactly at y = 0. In the aggregate, high merit cases
are more likely to result in litigation. This results in selection that favors the
plaintiff, the party who makes the offer.

Figure 3 raises two questions. First, why do cases with extreme y values—
high or low—have such a low probability of going to trial (or equivalently,
such a high probability of settling)? Second, why is the likelihood of going
to trial asymmetric and greater on the right (meritorious) side?

For the first question, we mentioned in Part 1 that part of the reason
for getting this result was due to the use of fact or case space (rather than
probability space) and the fact that the parties’ signals are correlated. We
provide a fuller explanation here. When case merit is high, due to correla-
tion with the original y value, both parties’ signals are likely to be above
the threshold for liability (y = 0) and both are likely to think the case
is meritorious. Thus, the plaintiff can demand a settlement amount that is
very close to the limit value, θH + Cd . Suppose, for example, that true case
merit is y = 6 and that the standard deviation of signal error is σ = 1.
Then 99.7% of parties will receive signals between 3 and 9. Even if the
defendant’s signal is at the low end of that range, yd = 3, he will initially
estimate the probability the plaintiff prevails at 99.8%, because his signal is
three standard deviations above the threshold for liability. Thus, the defen-
dant will accept nearly any amount the plaintiff will demand as long as it
is below θH + Cd . Similarly, even if the plaintiff receives a signal at the
high end of the range (e.g., yp = 9), it is rational for her to make a demand
that reflects the possibility that the defendant estimates that the plaintiff’s
probability of prevailing is “only” 99.8% (corresponding to a signal of
yd = yp = 3). To do so, the plaintiff need only reduce her settlement demand
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Table 1. The Plaintiff Trial Win Rate (σ = 1, Cp = Cd = 1/3)

Fraction of litigated The plaintiff
cases such that Y > 0 trial win rate

Parameters c = 0.5 c = erf (−4)+1
2 c = 0.5 c = erf (−4)+1

2

θH = 1, θL = 0 0.68 N/A 68% N/A
θH = 1, θL = 1

3 0.70 0.67 80% 78%
θH = 2

3 , θL = 1
3 0.76 0.65 59% 55%

by less than 0.2%, but she gets the benefit of settling and thus saving liti-
gation costs in many more cases, including cases where defendant’s signal
is yd = 3.

The answer to the second question—why the probability of trial is asym-
metric and greater on the right—hinges partly on the fact that we are
working with a plaintiff-offer model. In this model, a low-merit plaintiff
can capitalize on her option of walking away with the defendant’s litiga-
tion cost. Consider cases with y values that are far below zero. These are
low-merit cases, and will in most instances generate small yp values—more
specifically, yp values below y0. Under the semi-pooling equilibrium, we
observed that all plaintiffs observing yp � y0 will make a settlement demand
θL + Cd , which will be accepted by every defendant type.20 It stands to rea-
son that because yp is correlated to the true y, the more negative y gets,
the more likely yp will fall below y0. For this reason, this threshold behav-
ior will have the effect of disproportionately settling low-merit cases and
can lead to a bias toward high-merit cases in terms of cases that go to
trial.

The implications of the asymmetry observed in Figure 3 are illustrated
in Table 1, which lists plaintiff trial win rates under various parametric
specifications when Cp = Cd = 1/3. As before, we ran the simulations
with two different boundary values, s0 = (θL + Cd) + 0.5 (θH − θL) and

20. Although the threshold yp value (i.e., yp = y0) might suggest a sharp discon-
tinuity in the probability of litigation, there is no discontinuity in Figure 3 because the
horizontal axis reflects the true value of y, not the plaintiff’s signal, yp.
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s0 = (θL +Cd)+
(

erf(−4)+1
2

)
(θH − θL). The second and third columns indi-

cate the fraction of litigated cases where case merit is above the threshold for
liability (Y > 0), and the last two columns indicate the corresponding plain-
tiff trial win rates.When the law is precise so that θL = 0 and θH = 1, the win
rate and the fraction of litigated cases with Y > 0 will coincide. Otherwise
there will be some divergence, because even cases below the threshold may
result in plaintiff victories and/or even cases above the threshold may result
in plaintiff losses. Note that higher initial conditions will lead to higher
plaintiff trial win rates.

In the first row, the parameter values are the same as under Priest and
Klein’s original model. When c = 0.5, the plaintiff trial win rate is 68%,
well over 50%. On the other hand, for reasons explained in the Appendix,
when the initial condition is really small, the equilibrium fails. In the sec-
ond row, we fixed θL = 1

3 to ensure that the plaintiff would have a credible
threat to go to trial. In this case, the plaintiff trial win rate ranged from 78%
to 80% depending on the initial condition. This increase is expected since
we are raising the probability with which low merit plaintiffs will win at
trial. In the third row, we further fixed θH = 2

3 to ensure that the defen-
dant would also have a credible threat to defend. In this case, the plaintiff
trial win rates ranged from 55% to 59%. The rates in this row are much
closer to 50%, but the results here are driven by the fact that the plaintiff
trial win rate must be strictly lower than 67%—the probability with which
high merit plaintiffs will prevail at trial. We obtained qualitatively similar
results when we ran the calculations with other assumptions about litigation
costs.

Although plaintiff trial win rates of well over 50% are inconsistent with
Priest and Klein’s famous conjecture of 50% win rates, our model con-
firms a key implication of the Priest–Klein model, that close cases will
tend to go to trial and that extreme cases will tend to settle. The results of
our model are also, in a more subtle way, consistent with one-sided asym-
metric information models. As in Reinganum and Wilde (1986)’s signaling
model, the plaintiff in our model makes offers that ensure that cases that
are weak from the plaintiff’s perspective settle. That is, when the plaintiff
has received a weak signal, the plaintiff uses her information and bargain-
ing power to make offers in the pooling portion of the equilibrium, which
are always accepted. On the other hand, when the plaintiff’s signal is high
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enough that her offer is in the separating part of the equilibrium, once the
plaintiff has made her offer, the game involves screening, as in Bebchuk
(1984). Defendants who received high signals (indicating that the plaintiff
is likely to win) settle, while defendants who received low signals (indicat-
ing that the plaintiff is likely to lose) litigate. As a result, as in Daughety and
Reinganum (1994), where there is both signaling and screening, extreme
cases are trimmed from both sides. See Daughety and Reinganum (2012,
p. 44).

3.2. The Defendant-Offer and Random-Offer Models under the
Improper Uniform Distribution

So far, we have considered the P-model, in which the plaintiff makes
a take-it-or-leave-it offer. The D-model, in which the defendant makes the
take-it-or-leave-it offer, is essentially a mirror image of the P-model. The
two models exhibit what Daughety and Reinganum (1994) call “label dual-
ity.” The analysis is very similar, and we show the following result in the
Appendix.

PROPOSITION 2. The Symmetry between the P-Model and the D-Model.
When the plaintiff and the defendant face identical litigation costs, the lit-

igation probability function of the D-model will be the reflection of the

litigation probability function from the P-model around y = 0. In other

words, for each y ∈ R, the probability that a case of merit y will go to trial

in the P-model is the same as the probability that a case of merit −y will

go to trial in the D-model. Furthermore, if, in addition, θH = 1 − θL, then

the plaintiff trial win rate in the D-model is one minus the plaintiff trial win

rate from the P-model.

One corollary of Proposition 2 is that, in the D-model, we will observe
a plaintiff trial win rate that is less than 50%. If we assume Cp = Cd and
θL = 1 − θH , then the plaintiff trial win rate is simply 1 minus the win rate
from the P-model.

It is, of course, unrealistic to assume that one side has all the bargaining
power. Instead, bargaining power is likely to be shared between plaintiffs
and defendants. We can model equal bargaining power between the parties
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by assuming that plaintiff and defendant each makes the take-it-or-leave-it
offer with probability 50%. One can analyze that situation by randomizing
with equal probability between the P-model and the D-model. When Cp =
Cd and θH = 1 − θL, the plaintiff trial win rate will be 50%.21 Under this
scenario, the results mimic the Priest–Klein model: close cases are more
likely to go to trial, and the plaintiff trial win rate is 50%.

3.3. Extension to a General Distribution of Disputes

The previous sections have assumed that σ = 1 and gY (x) = 1. In this
section, we ask what happens when we extend the set-up to work with a
more general probability density function. In general, for any fixed level of
signal accuracy, σ > 0, the plaintiff trial win rate will depend on the shape
of gY (x). For example, if a disproportionately high number of disputes exist
just to the right of 0 rather than to the left of 0, then the plaintiff trial win
rate will be higher than one obtained under the assumption that gY (x) is flat.
Nevertheless, Priest and Klein (1984) argued that, regardless of the shape of
gY (x), the plaintiff trial win rate will approach 50% in the limit as σ goes to

zero, and Lee and Klerman (2016) proved the result under the assumption
that gY (x) be continuous, strictly positive, and bounded above. That is, as
the signals both parties receive about case merit become more and more
accurate, the plaintiff trial win rate converges to 50%. In this section, we
likewise ask whether, as σ approaches zero, the plaintiff trial win rate, for
gY (x) that is continuous, strictly positive, and bounded above, will approach
the win rate obtained in Table 1.

We begin by considering the manner in which the litigants make infer-
ences about case merit. As noted already, given his signal, Yp = yp, the
plaintiff can construct the distribution of Y conditional on Yp = yp using
Bayes’ rule, and the defendant likewise. At this point, we discuss two dif-
ferent types of inferences for the litigants. A naïve litigant constructs the
conditional distribution without knowledge of gY (x), or alternatively, as
if gY (x) is flat. A sophisticated litigant, however, is aware of gY (x) and
will take the shape of gY (x) into account in constructing the conditional

21. The plaintiff trial win rate will also be 50% even if θH 
= 1 − θL, if the
randomization between the plaintiff-offer and defendant-offer models occurs with exactly
the right proportions.
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distribution. Thus, for i = p, d we have

fY |Yi=yi (x) =
{
ϕσ (yi − x) for a naïve litigant

gY (x)ϕσ (yi−x)∫∞
−∞ gY (z)ϕσ (yi−z)dz

for a sophisticated litigant.

One possible justification for naïve inferences is that the litigants are
simply uninformed about gY (x). In this case, naïve inference may be ratio-
nalized according to Laplace’s suggestion that one should apply a uniform
distribution to unknown events according to the “principle of insufficient
reason.” See Hartigan (1983, p. 2) and Lee and Klerman (2016). In their
model, Priest and Klein (1984) implicitly assume that the litigants are naïve
and state their 50% limit result under this assumption. Lee and Klerman
(2016), however, prove the 50% limit hypothesis for both naïve and sophis-
ticated litigants. In this section, we prove the corresponding result for the
take-it-or-leave-it model when the litigants are naïve. We have been unable
to prove the same result when the litigants are sophisticated. Nevertheless,
we can think of no reason why it should not be true, and simulations suggest
it remains true.

Note that when the litigants make their utility calculations based on naïve
inferences, the set-up of the problem remains unaltered through Proposi-
tion 1. The only difference is that calculation of the plaintiff trial win rate
will initially depend on the shape of the distribution. Therefore, when the
litigants are naïve, the arguments used in Proposition 3 of Lee and Klerman
(2016) can apply to show that the plaintiff trial win rate in the limit will
indeed equal to the one calculated under the assumption that gY (x) = 1 for
all x and σ = 1. In the Appendix, we prove the following result.

PROPOSITION 3. The Irrelevance of the Dispute Distribution for the Limit
Results in the Take-It-or-Leave-It Offer Models. Under both the P-model

and the D-model, given a distribution of disputes that is strictly positive,

bounded above, and continuous, if the litigants make naïve inferences, the

plaintiff trial win rate in the limit as σ approaches zero will be equal to the

plaintiff trial win rate obtained when σ = 1 and the distribution of disputes

was assumed to be improper uniform.

The intuition behind Proposition 3 is as follows. When the litigants are
naïve, the litigation probability function will not depend on gY (x). When
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Figure 4. Litigation Probability Function for the P-Model (σ = 0.1, Cp = Cd =
1/3, and (θL, θH ) = ( 1

3 , 2
3

)
, c = erf (−4)+1

2 ).

σ = 1, the litigant probability function will remain identical to Figure 3.
But as σ approaches zero, the shape of the litigation probability function
will get progressively sharper, and the peak, which lies to the right of zero,
will get arbitrarily close to zero (see Figure 4). This means that as parties
get more and more accurate signals, only cases really close to zero will
likely get litigated, so the distribution of disputes away from zero will be
irrelevant to the plaintiff trial win rate. Note that varying σ will not vary the
proportion of the graph of the litigation probability function that lies to the
right of 0. Meanwhile, because gY (x) is continuous and strictly positive, as
σ becomes smaller, the cases going to trial that lie just to the right of zero
as a fraction of the total number of cases going to trial will approximately
equal this proportion.

Notice also that the same intuition should carry over even when litigants
are sophisticated.As σ approaches zero, the correlation between the parties’
signals will become stronger, and the shape of gY (x) will have less and less
of an impact on litigants’ inferences. In the limit, litigants’ sophisticated
inferences will coincide with their naïve inferences. In other words, as σ
approaches zero, it will be as if the litigants are making inferences as if gY (x)

were flat.Another way of explaining the intuition is that, with a smooth sym-
metrical distribution, naïve and sophisticated beliefs approach each other
near zero. On the other hand, when the signal is far from zero, there is more
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likely to be divergence between naïve and sophisticated beliefs. Neverthe-
less, when the signal is far from zero, almost all cases settle anyway, so there
is little effect on the selection of disputes for litigation. As σ approaches
zero, nearly all cases are “far” from zero and settle, so results with naïve and
sophisticated beliefs coincide. A Mathematica simulation22 using normal
distributions for gY (x) confirms that, when litigants are sophisticated, the
plaintiff trial win rate will converge, as σ approaches zero, to the same value
as when litigants are naïve, although we have been unable to establish this
result analytically.

4. The Model with the Chatterjee–Samuelson Mechanism

In this Part, we investigate the implications of the Chatterjee–Samuelson
mechanism under the set-up discussed in Part 3. As before, the plaintiff
receives a signal Yp = Y + εp and the defendant receives a signal Yd =
Y + εd , where εp, εd ∼ N (0, σ 2). We further assume that Cp = Cd = C,
so that the litigants face the same litigation costs. Likewise, the plaintiff
wins with probability θH if y > 0 and with probability θL if y � 0, where
0 � θL < θH � 1.

Instead of having one party make a take-it-or-leave-it offer, we assume
that each litigant submits a secret demand or offer to a neutral party (or
computer). If the plaintiff’s demand is greater than the defendant’s offer, the
case goes to trial. If the plaintiff’s offer is less than or equal to the defendant’s
offer, then the case settles for the average of the two offers. The plaintiff
makes her secret settlement demand, p(yp), based on the signal she observes
and inferences about the distribution of the likely defendant signals. The
defendant likewise makes a secret settlement offer, d(yd), based on his signal
and similar inferences. Because the demands and offers are secret, neither
party learns about or from the other party’s signal. One advantage of the

22. For our simulations, we started with gY (x) as a normal distribution with stan-
dard deviation equal to 1 and mean equal to 1. We then plotted n (u), which is the
plaintiff’s offer curve in normalized variables (see Appendix), for κ = 2 and for progres-
sively decreasing σ values. We observed that the corresponding n (u) curves converge
toward the n (u) curve we obtained when the distribution of disputes was assumed to
be improper uniform. We then repeated the simulations for other standard deviation and
mean values as well as for different κ values.
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Chatterjee–Samuelson mechanism is that it does not require an assumption
that one side has all the bargaining power. As a result, there is no first-
mover advantage and likewise, the mechanism does not allow one party to
unilaterally extract the other party’s litigation costs.

Friedman and Wittman (2007) first explored the implications of this
bargaining mechanism for litigation in the case where the litigants’ signals
are distributed according to two independent uniform distributions over
[0,1]. In their model, if the case goes to trial, the true case strength (the
judgment amount) is the average of the two signals. They found that when
trial cost is high, the selection result is consistent with the Priest–Klein
result in that disputes that are close cases—that is, the ex ante probability
that the plaintiff will prevail at trial is about 50%—are more likely to lead to
larger gaps of signals and thus, are more likely to go to trial. See Friedman
and Wittman (2007, pp. 108–110).

Although we follow their pioneering work, we also diverge from their
model in a number of important ways. First, in our model, the support for
the parties’ signals is the entire real line. Second, the signals Yp and Yd are
correlated, and as such, the plaintiff makes inferences about the distribution
of Yd based on yp, and likewise for the defendant. Third, if the parties cannot
settle, the parties’respective payoffs at trial are determined by the underlying
true case merit y, which does not depend on either party’s signal. Fourth, we
take into account plaintiff and defendant credibility by considering θL > 0
and θH < 1.

Like Friedman and Wittman (2007), we consider pure strategies con-
tingent on the realized signal. Thus, a plaintiff’s strategy is a measurable
function p(·) : R → R+ that assigns the demand p = p(yp) ∈ [0, ∞) when
it observes signal yp. Similarly, a defendant’s strategy is a measurable func-
tion d(·) : R → R that assigns the offer d = d(yd) ∈ (−∞, ∞) when it
observes signal yd . The objective of the plaintiff is to maximize expected net
payments, conditioned on its realized signal yp and the defendant’s strategy
d(·). The defendant’s object is to minimize expected net payments.

The payoff function for the plaintiff is:

Up
(
p, yp, d(yd ; σ); σ

)
=
∫
{yd | p�d(yd ;σ)}

(
d(yd ; σ)+ p

2

)
fYd |Yp=yp (yd) dyd

D
ow

nloaded from
 https://academ

ic.oup.com
/aler/article-abstract/20/2/382/5113390 by Serials Section N

orris M
edical Library user on 17 January 2019



Litigation and Selection 411

+
∫

{yd | p>d(yd ;σ)}

(
(θH − θL)Pr

(
Y � 0|Yp = yp, Yd = yd

)
+ (θL − C)

)
fYd |Yp=yp (yd) dyd .

The first-term in the right-hand side is the expected value of settling, and
the second-term is the expected value of going to trial. Likewise, the payoff
for the defendant is:

Ud
(
d, yd , p(yp; σ); σ

)
=
∫

{yp|p(yp;σ)�d}

(
d + p

(
yp; σ

)
2

)
fYp|Yd=yd (yp)dyp

+
∫

{yp|p(yp;σ)>d}

(
(θH − θL)Pr

(
Y � 0|Yp = yp, Yd = yd

)
+ (θL + C)

)
fYp|Yd=yd (yp)dyp.

A Nash equilibrium (NE) of this game is defined as follows:

DEFINITION 1. A Nash equilibrium (NE) is a strategy pair (p(yp; σ), d(yd ; σ))
such that

• p(yp; σ) = argmaxp Up(p, yp, d(yd ; σ); σ), and

• d(yd ; σ) = argmind Ud(d, yd , p(yp; σ); σ).

Friedman and Wittman (2007) show that in their game any best response
can be represented by a function that is everywhere weakly increasing.
Their argument can be adopted to show the same result in our game, and
we include this result in the Appendix (Lemma B1). Note, however, that, as
Friedman and Wittman (2007) observed, existence of a NE is not guaranteed
in this game because we are restricting our analysis to pure strategy Nash
equilibria. We have been unable to identify any pure strategy NE in which
both parties employ fully continuous strategies.23 But if we allow jump

23. Although Friedman and Wittman (2007) analyze continuous piecewise linear
symmetric Nash equilibria, in our game, it can be shown that no such Nash equilibria
exist. Because the compound distributions fYp|Yd =yd (yp) and fYd |Yp=yp (yd) are normal
distributions, the best response function to a continuous piecewise linear function strategy
fails to be a linear strategy. It is our hypothesis that all symmetric Nash equilibria will take
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discontinuities, we are able to show that there are an infinite number of
pure strategy Nash equilibria. Our analysis will focus on the properties of
symmetric and asymmetric Nash equilibria and their existence in the domain
of all possible strategies.

4.1. Symmetric Bargaining under the Improper Uniform
Distribution

As before, we begin our analysis by considering the case where the dis-
tribution of disputes is assumed to be improper uniform. Friedman and
Wittman (2007) limit their substantive analysis to symmetric Nash equi-
libria. These are Nash equilibria in which the plaintiff’s strategy and the
defendant’s strategy are “symmetric” with respect to one another. Their
definition of symmetry translates to our set-up as follows:

DEFINITION 2. The strategies p(yp; σ) and d(yd ; σ) are symmetric if for all

x ∈ R, p(x; σ)+ d(−x; σ) = θH + θL.24

The main intuition behind symmetric strategies is that when two litigants
are equally confident (or equally unconfident) that the outcome will favor
their side, they will be equally aggressive (or timid) in their settlement
terms. For example, suppose that under p(yp; σ), if the plaintiff receives
a signal that leads her to believe with probability 90% (based on her
private signal) that the case will be of high merit, she will make a set-
tlement demand in the amount of θH − a. Meanwhile, suppose that under
d(yp; σ), if the defendant receives the mirror image of the plaintiff’s sig-
nal and believes with probability 90% (based on his private signal) that
the case will be of low merit, he will make a settlement offer in the
amount of θL − b. When a = b, we will say their strategies are sym-
metric. When such conditions are not satisfied in a NE, we will call it an
asymmetric NE.

on the form of step functions. The highly restrictive conditions of correlated inferences
together with equilibria symmetry lead us to surmise that there cannot be any Nash
equilibrium in which even a portion of a litigant’s strategy is continuously increasing or
decreasing.

24. Note that when θH = 1 and θL = 0, then we have p(x; σ) = 1 − d(−x; σ),
which is equivalent to the definition from Friedman and Wittman (2007).
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Figure 5. Symmetric NE Strategies.

When gY (x) = 1, notice that if a symmetric NE were to exist, the plaintiff
trial win rate will necessarily be 50%. This can be seen as follows. The
litigation condition set in this game is Rσ (yp, yd) = {(yp, yd)|p(yp; σ) >
d(yd ; σ)}. Note that if p(yp; σ) and d(yd ; σ) are symmetric, p(yp; σ) >
d(yd ; σ) if and only if 1 − d(−yp; σ) > 1 − p(−yd ; σ), or p(−yd ; σ) >
d(−yp; σ). Therefore, (yp, yd) ∈ Rσ (yp, yd) if and only if (−yd , −yp) ∈
Rσ (yp, yd) and the plaintiff trial win rate will necessarily be 50%.

Moreover, it can also be shown that there is at least one class of symmetric
Nash equilibria. Consider a strategy profile in which the defendant offers θL

up until some threshold yd value (say yd = γ (σ )) and offers θH afterward.
Likewise, suppose the plaintiff demands θL up until yp = −γ (σ ) and θH

afterward. The strategies are symmetric by construction. Then as long as
we can find a suitable γ (σ ) ∈ R such that these strategies constitute a NE,
we will have a symmetric NE. In the Appendix, we show such γ (σ ) ∈ R

always exists. In addition, because the same argument applies for θL + ε

and θH − ε, when ε > 0 is sufficiently small, there is a family of symmetric
Nash equilibria.25

Figure 5 illustrates one such equilibrium when θH = 1 and θL = 0.26 The
plaintiff demands zero up to −γ and then demands one. Defendant offers
zero up to γ , and then offers one. It is relatively easy to see that this is a
NE. Where both parties receive favorable signals (i.e., high yp and high yd),
a court judgment in the amount of θH = 1 is highly likely, and therefore, it

25. Note that there are also other types of symmetric equilibria. For example, there
is the trivial class of equilibria in which all cases go to trial because the plaintiff’s demand
is absurdly high and defendant’s offer is unreasonably low (Friedman andWittman, 2007).

26. Cf. Friedman and Wittman (2007, p. 105, Figure 1).
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is in their mutual interest to save litigation costs and settle at 1. Similarly,
when both parties receive weak signals (i.e., low yp and yd), it is in the
mutual interest to settle at zero.27 This saves both parties litigation costs,
and the plaintiff cannot expect to do better by litigating. Only when both
of their signals are close to zero, the threshold for liability, is it rational for
the parties to diverge in their settlement demands. The plaintiff observing
a signal close to zero will demand one, because there is a good chance
that defendant receives a signal greater than γ . Thus, by demanding one,
the plaintiff has a good chance of settling at one. Similarly, the defendant
observing a signal close to zero will offer zero and may very well be able
to settle for zero.

Because the symmetry of the strategies leads to an equal number of
litigated cases to the left and right of the decision standard, and because
the distribution of disputes is assumed to be improper uniform, the plaintiff
trial win rate will be θH +θL

2 . If θH = 1 − θL, then the plaintiff trial win rate
will be 50%. We summarize these results in Proposition 4.

PROPOSITION 4. Symmetric Nash Equilibria under the Chatterjee–
Samuelson Bargaining Model. Under the Chatterjee–Samuelson bargain-

ing model with gY (x) = 1, the following is true.

(a) There exists a continuous family of symmetric Nash equilibria,
(b) the plaintiff trial win rate is θH +θL

2 for any symmetric NE, and

(c) a sufficient condition that ensures that extreme cases on both ends

will be more likely to settle is that both the plaintiff’s strategy

and the defendant’s strategy eventually coincide at a fixed value in

each direction (as yp and yd approach positive infinity and negative

infinity).

A proof can be found in the Appendix.

27. By assuming θL = 0, we are implicitly assuming that plaintiff threat credibility
is not an issue and that plaintiff would go to trial even though litigation costs surely exceed
expected recoveries for low signals. As a result, plaintiff is better off settling for zero
than litigating when its signal is low.
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4.2. Asymmetric Bargaining under the Improper Uniform
Distribution

We now consider asymmetric Nash equilibria. For these equilibria, the
plaintiff trial win rate can be greater or less than 50%. The easiest way to
construct an example of an asymmetric equilibrium is to consider the case
where one party offers (or demands) the same settlement amount regard-
less of his or her type and the other party employs a two-step strategy
with a threshold type. For example, consider an equilibrium involving an
“obstinate” plaintiff who chooses to demand a fixed settlement amount of s

regardless of her type, where s ∈ (max {θL + C, θH − C}, θH + C), which
is non-empty. The defendant’s best response strategy is to offer either s or
θL − C based on his type. That is, the defendant offers s (which will always
be accepted), if his signal is above a certain threshold, y∗

d , but otherwise
makes a very low offer, θL − C, (which will always be rejected). Define the
threshold according to the following equation:

(θH − θL)Pr
(
Y � 0|Yd = y∗

d

)+ (θL + C) = s.

The defendant type y∗
d will be indifferent between settling at s or going to

trial. It follows that, given the plaintiff’s strategy, all defendant types less
than y∗

d will prefer to litigate and all defendant types greater than y∗
d will

prefer to settle. Thus, a two-step strategy will be optimal for the defen-
dant. Note that as long as s ∈ (max {θL + C, θH − C}, θH + C), such y∗

d

will always exist. Moreover, the plaintiff in turn has no reason to devi-
ate. Once she considers deviating below s, no deviation will be optimal
unless she matches the defendant’s offer of θL − C. But she will have no
reason to match θL − C, given that this value is the minimum guaran-
teed value of going to trial for any plaintiff. On the other hand, as long as
s > θH − C, settling at s is better than going to trial for any plaintiff type.
In this equilibrium, disputes will go to trial whenever yd < y∗

d , and we can
show that the plaintiff trial win rate will be θL (see Appendix). Similarly,
note that we can construct a class of “obstinate” defendant equilibria, in
which disputes will go to trial whenever yp > y∗

p for some y∗
p , and the

resulting plaintiff trial win rate will be θH . We summarize the results in
Proposition 5.
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PROPOSITION 5. Asymmetric Nash Equilibria under the Chatterjee–
Samuelson Bargaining Model. Under the Chatterjee–Samuelson bargain-

ing model with gY (x) = 1, the following is true.

(a) There exists a continuous family of asymmetric Nash equilibria;

(b) the plaintiff trial win rate will be θL under the obstinate plaintiff

equilibrium; and

(c) the plaintiff trial win rate will be θH under the obstinate defendant

equilibrium.

The proof is included in the Appendix. Note that if we assume θH +θL =
1 and if obstinate plaintiff and obstinate defendant equilibria occur with
equal probability, then the plaintiff trial win rate will be 50%. Similarly, if
θH +θL 
= 1, but obstinate plaintiff and obstinate defendant equilibria occur
in exactly the right proportions, the plaintiff trial win rate will also be 50%.
Nevertheless, because there is little reason to believe these assumptions to
be true, we have reason to doubt that the aggregate plaintiff trial win rate
will be 50%.

4.3. Extension to a General Distribution of Disputes

When we consider a general distribution of disputes, a few important
differences emerge. First, because the selection of the disputes that go to trial
is sensitive to the choice of the distribution, we state general results regarding
the plaintiff trial win rate in the limit as σ goes to zero. Second, as mentioned
in Section 3.3, there are two ways in which the litigants make inferences
regarding the conditional distribution of the opponent types—naïve and
sophisticated. Third, unless the distribution of disputes is symmetric around
0, the symmetric step-function strategies, such as the one discussed in the
previous section, will not constitute a NE.

For this reason, in this section, we consider a one-parameter family of
Nash equilibria

(
p(yp; σ), d(yd ; σ)

)
, where σ is the parameter, and then

analyze the equilibrium behavior as σ approaches zero.

DEFINITION 3. Given a distribution of disputes, gY (x), that is continuous,

strictly positive, and bounded above, a one-parameter family of Nash equi-

libria is a set of NE strategy pairs
(
p(yp; σ), d(yd ; σ)

)
defined for each
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σ ∈ (0, σ̄ ) for some σ̄ > 0 such that p(yp; σ) and d(yd ; σ) are both con-

tinuous in σ . Given a continuous family, a symmetric limit equilibrium is

a pair of strategies
(
p(yp; 0), d(yd ; 0)

)
, such that the following conditions

hold true:

• p(yp; 0) = lim
σ→0

p(yp; σ);

• d(yd ; 0) = lim
σ→0

d(yd ; σ);

• p(yp; 0) = argmaxp lim
σ→0

Up(p, yp, d(yd ; σ); σ) = argmaxp lim
σ→0

Up(p, yp, d(yd ; 0); σ);

• d(yd ; 0) = argmind lim
σ→0

Ud(d, yd , p(yp; σ); σ) = argmind lim
σ→0

Ud(d, yd , p(yp; 0); σ); and

• p(x; 0) = 1 − d(−x; 0) for all x ∈ R.

Under this definition, a symmetric limit equilibrium is the limit (as σ
approaches 0) of a family of Nash equilibria defined over σ ∈ (0, σ̄ ), and
is itself a symmetric NE of the σ -game in the limit. Note, however, that
given a symmetric limit equilibrium, it will not necessarily be the case that
each NE

(
p(yp; σ), d(yd ; σ)

)
for σ ∈ (0, σ̄ ) will itself be symmetric. The

conditions require only that the equilibrium is symmetric in the limit. When
the last condition is not satisfied, we will say the equilibrium is asymmetric
in the limit.

By the analogous reasoning as before, given a symmetric limit equilib-
rium, it follows that the plaintiff trial win rate will necessarily be θH +θL

2 in
the limit. In the Appendix, we show the following.

PROPOSITION 6. Symmetric and Asymmetric Limit Equilibria under the
Chatterjee–Samuelson Bargaining Model. Suppose the distribution of dis-

putes is strictly positive, bounded above, and continuous. Then under the

Chatterjee–Samuelson bargaining mechanism, whether the litigants make

naïve inferences or sophisticated inferences, the following is true.

(a) There exists at least one class of symmetric limit equilibria, and for

all symmetric limit equilibria, the plaintiff trial win rate is θH +θL
2 as

σ approaches zero; and

(b) there exist classes of obstinate limit equilibria (which are asym-

metric in the limit), and the plaintiff trial win rate is θL for
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obstinate plaintiff limit equilibria and θH for obstinate defendant

limit equilibria as σ approaches zero.

A proof can be found in the Appendix.

5. Conclusion

This paper analyzes selection in a model with two-sided incomplete
information and correlated signals under two bargaining protocols. Under
the take-it-or-leave-it offer model, we identify a class of semi-pooling equi-
libria in which most disputes settle. We find that extreme cases (those in
which case merit is far from the liability threshold) are more likely to settle,
and close cases are more likely to go to trial. Nevertheless, unlike Priest
and Klein (1984)’s prediction, cases that go to trial are biased in favor of
the offeror, and the plaintiff trial win rate deviates systematically from 50%
unless the party that makes the offer is randomized. Under the Chatterjee–
Samuelson mechanism, we examine the litigants’behavior under symmetric
and asymmetric Nash equilibria. Under symmetric equilibria, close cases
litigate, and, depending on litigation costs and the modeling of plaintiff
threat credibility, the plaintiff trial win rate may be 50%. Under asymmetric
equilibria, extreme cases are more likely to go to trial and the plaintiff trial
win rate will deviate significantly from 50%.

Supplementary Material

Supplementary material is available at American Law and Economics

Review online.
This Appendix derives the equilibria that are described more informally

in the body of the paper. It also proves the propositions.

Appendix

A. Model with Take-It-or-Leave-It Offers

The Plaintiff-Offer Model

We begin our analysis by considering the possibility of fully separating
equilibria that are everywhere differentiable. Unfortunately, we conclude
that they do not exist. In addition, we also find that—under a reasonable
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assumption regarding the off-the-equilibrium-path belief—there are no
complete pooling equilibria. Instead, we identify a class of semi-pooling
equilibria in which all plaintiff types below some threshold pool and only
those plaintiff types above that threshold separate.

Our analysis proceeds in eight steps. First, we consider the defendant’s
optimal response to the plaintiff’s settlement demand under the assumption
that the plaintiff’s settlement demand fully reveals her type. Second, we con-
struct the plaintiff’s expected utility function given the defendant’s expected
response and take the first-order condition to derive the ordinary differ-
ential equation giving rise to the plaintiff’s (interior) optimal settlement
demand function. Third, we derive the properties of the interior solution
to the ordinary differential equation. Fourth, we return to the plaintiff’s
expected utility function to establish that a fully separating equilibrium
does not exist because we find that weak plaintiffs do better with corner
solutions. Fifth, we characterize a class of semi-pooling equilibria and also
eliminate completely pooling equilibria. Sixth, we consider issues pertain-
ing to equilibrium refinement. We examine various equilibrium refinement
criteria and suggest that it makes sense to focus on the solution with the
smallest feasible boundary value (if such a value exists) or to consider the
behavior of the solution in the limit as the boundary value approaches the
infimum (if the smallest feasible value does not exist). Seventh, we ana-
lyze the probability of rejection function for each defendant type under the
semi-pooling equilibria. Eighth, we consider the selection implications.

The Defendant’s Strategy. Suppose the plaintiff makes a settlement
demand and the defendant can fully infer the plaintiff type from the demand.
We normalize the settlement demand as τ = S−Cd−θL

θH −θL . Since there is a one-
to-one correspondence between τ and S, we can assume without loss of
generality that the plaintiff makes her settlement demand by simply spec-
ifying τ . We have already shown that a defendant, regardless of his type,
should always accept a settlement demand of τ = 0. Similarly, a risk-neutral
defendant should never accept any settlement demand τ � 1. This would
amount to a settlement demand greater than or equal to Cd + θH . As before,
because the defendant will always place some positive probability that the
case may be of low merit, going to trial will always be better off (in expec-
tation) than paying a sum greater than or equal to Cd + θH . It also follows
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that the strategy of demanding τ � 1 is strictly dominated for any plaintiff
type. To see this, consider a plaintiff offer of τ = 1−ε for small ε. Since the
defendants who would have rejected τ = 1−εwill also reject τ � 1, against
those defendants, the payoff is equal whether the plaintiff offers τ = 1 − ε

or τ � 1. On the other hand, for those defendants who would have accepted
τ = 1−ε, the plaintiff would get (θH − θL) (1 − ε)+Cd +θL if she offered
τ = 1 − ε, but if she offers τ � 1, trial is guaranteed and the best possible
outcome is θH − Cp, which will be less than (θH − θL) (1 − ε) + Cd + θL

as long as ε < Cp+Cd
θH −θL . Such ε will always exist since litigation costs are

positive. In short, regardless of her type, the plaintiff can always find a set-
tlement demand that will dominate τ � 1. Therefore, we have proved the
following lemma.

LEMMA A1. In a perfect Bayesian equilibrium, we must have τ ∈ [0, 1).
Furthermore, if a fully separating equilibrium were to exist, then τ ∈ (0, 1)
in equilibrium.

In deciding whether to accept or reject, what matters to the defendant is
the probability with which the defendant believes the case will be of high
merit. The defendant can estimate this subjective conditional probability Pd

based on his own signal and the plaintiff’s signal. In a fully separating equi-
librium, the defendant can infer the plaintiff’s exact type from her demand.
Using Bayes’ Rule, we have:

The defendant’s own estimate of the probability that the case is of high merit
given his own signal yd and after inferring the plaintiff’s type to be yp when
gY (x) = 1

Pd = Pr(Y > 0|Yd = yd , Yp = yp)

=
∫∞

0 ϕσ (x − yd) ϕσ (x − yp)dx∫∞
−∞ ϕσ (x − yd) ϕσ (x − yp)dx

= �

(
yp + yd√

2σ

)
, (A1)

where�(·) is the cumulative distribution function corresponding to ϕ (·) ≡
ϕ1 (·).

The defendant’s strategy is to observe yd and τ and decide whether to
accept or reject. The defendant has an initial conditional posterior about y

based on the signal he observed, yd , but that will be updated because the
plaintiff’s settlement demand will reveal additional information about the
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case merit. If the defendant observes yd = −5, initially he might be inclined
to think the true y is close to −5, indicating a strong case for the defendant.
But if the plaintiff makes a settlement demand from which the defendant
can validly infer that the plaintiff has observed yp = 5, then the defendant
will now update his posterior and believe that the true y must be closer to
zero, indicating that the case is actually a close call. The defendant will
then take this new information into account in deciding whether to accept
or reject the plaintiff’s demand.

Let b(τ ) denote the defendant’s belief as to the plaintiff type when the
plaintiff demands τ . A rational defendant will accept the plaintiff’s settle-
ment demand if and only if the demand is less than or equal to the defendant’s
expected loss were the case to go to trial.28 Where b(τ ) is a point belief, the
defendant will accept if and only if

S � �

(
b(τ )+ yd√

2σ

)
θH +

(
1 −�

(
b(τ )+ yd√

2σ

))
θL + Cd .

This condition is equivalent to the following.

The defendant’s condition for accepting the plaintiff’s settlement demand under
a point belief

τ � �

(
b(τ )+ yd√

2σ

)
. (A2)

Define γyp (z) as the yd value, such that given the defendant’s inference
of the plaintiff’s signal to be yp, the probability that the case is of high
merit is exactly z. In other words, γyp (z) is defined implicitly as follows:

Pr(Y > 0|Yd = γyp (z) , Yp = yp) = �
(

yp+γyp (z)√
2σ

)
= z. We can then

rewrite the defendant’s strategy from Equation (A2) as follows: where b(τ )

is a point belief, the defendant will accept τ if and only if yd � γb(τ ) (τ ). In
short, γb(τ ) (τ ) is the minimum yd that will persuade the defendant to accept
the settlement demand of τ when he is acting under the belief function
b(τ ). For values of τ that correspond to a unique yp, we can define γb(τ ) (τ )

implicitly using Equation (A1)

τ = �

(
γb(τ ) (τ )+ b(τ )√

2σ

)
. (A3)

28. We assume that if the defendant is indifferent between settling and going to
trial, he will settle.
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It follows that γb(τ ) (τ ) = √
2σ�−1 (τ )− b(τ ), where�−1(·) is the inverse

cumulative distribution function. Differentiating this last expression with
respect to τ , we get

dγb(τ )(τ )

dτ =
√

2σ
ϕ(�−1(τ ))

−b′(τ ). Therefore, we have shown
the following relationship between the defendant’s belief function and the
lowest defendant type that would accept a settlement demand of τ .

LEMMAA2. When gY (x) = 1 and for values of τ that correspond to a unique

yp, γb(τ ) (τ ) = √
2σ�−1 (τ )− b(τ ) and

dγb(τ )(τ )

dτ =
√

2σ
ϕ(�−1(τ ))

− b′(τ ).

The Plaintiff’s Expected Utility Function and the First-Order Condition.

We now consider the plaintiff’s expected utility function given her type, her
settlement demand, and the defendant’s belief function, b(τ ). Let FYd |Yp=yp

be the cumulative conditional distribution of Yd given Yp = yp. The expected
payoff to the plaintiff who makes a settlement demand τ is given by the
following equation.

The plaintiff’s expected utility function

Up
(
yp, τ ; b(τ )

)
= FYd |Yp=yp

(
γb(τ ) (τ )

) [
Pr(Y > 0 | Yp = yp, Yd < γb(τ ) (τ ))θH

+ (
1 − Pr

(
Y > 0 | Yp = yp, Yd < γb(τ ) (τ )

))
θL − Cp

]
+ (1 − FYd |Yp=yp

(
γb(τ ) (τ )

))
S. (A4)

In the first line of Equation (A4), the first term on the right-hand side
represents the plaintiff’s expectation if the case goes to trial (because the
defendant rejected the plaintiff’s settlement demand) and the second term
represents the plaintiff’s expectation if the case settles. After some algebra,
Equation (A4) can be rewritten as:

Up
(
yp, τ ; b(τ )

)
= (θH − θL)

[(∫ γb(τ )(τ )

−∞
�

(
yp + yd√

2σ

)
fYd |Yp=yp(yd)dyd

)
+ (

1 − FYd |Yp=yp

(
γb(τ ) (τ )

))
(τ + κ)

]
+ (θL − Cp

)
, (A5)

where κ ≡ Cp+Cd
θH −θL is the ratio between the aggregate litigation costs and the

difference in expected damages for the high merit case and the low merit
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case for the plaintiff. The denominator of κ indicates the true amount at
stake for the parties in going to trial. If κ � 1, we shall say litigation is
expensive and if κ < 1, we shall say litigation is inexpensive.

Let ζ ∗(yp) denote an interior solution maximizing the plaintiff’s expected
utility function under Equation (A5). Because the plaintiff’s expected payoff
under ζ ∗(yp) may be lower than one under the corner solution (τ = 0), we
reserve s∗(yp) to denote the plaintiff’s optimal strategy that accounts for
this corner solution. Likewise, we let β∗(·) be the belief consistent with
ζ ∗(yp), and use b∗(·) to denote the belief consistent with s∗(yp). The first-
order condition derived from the plaintiff’s expected utility must equal zero
when τ = ζ ∗(yp). We differentiate Equation (A5) with respect to τ and plug

in �
(
γb(τ )(τ )+b(τ )√

2σ

)
= τ and b(τ ) = β∗(τ ). Evaluating the expression at

τ = ζ ∗(yp) and setting it equal to zero, we obtain the following condition29:

1 − FYd |Yp=yp

(
γβ∗(ζ∗(yp))

(
ζ ∗(yp)

))
= κfYd |Yp=yp

(
γβ∗(ζ∗(yp))

(
ζ ∗ (yp

)))(dγβ∗(τ ) (τ )

dτ
|τ=ζ∗(yp)

)
. (A6)

The following lemma derives the differential equation defining the solution
to Equation (A6).

LEMMA A3. The solution ζ ∗(yp) to Equation (A6) satisfies the following

differential equation:

dζ ∗(yp)

dyp
=
(
ϕ
(
�−1

(
ζ ∗(yp)

))
√

2σ

)⎡⎢⎣1 −
⎛⎜⎝ ϕ

(
�−1

(
ζ ∗(yp)

))
κh
(
�−1

(
ζ ∗(yp)

)−
√

2yp
σ

)
⎞⎟⎠
⎤⎥⎦

−1

,

(A7)
where h (·) is the hazard rate for the standard normal distribution.

Proof of Lemma A3. We begin with a change of variables. Define Y1 =
Y
σ

, y1 = y
σ

, U = Yp
σ

, u = yp
σ

, V = Yd
σ

, v = yd
σ

, u0 = y0

σ
, b1(τ ) = b(τ )

σ
,

29. We verified the second-order condition using Mathematica simulations. In all
cases we checked, the second-order condition was locally satisfied, and the stationary
point proved to be unique, indicating that the solution we found is the global interior
maximum—that is, away from the corner solution.
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and ηb1(τ )(τ ) = γb(τ )(τ )

σ
. In addition, define n(u) = �−1(ζ∗(σu))√

2
. This means

ζ ∗(yp)= ζ ∗(σu)=�(√2n(u)
)

and ζ ∗′(yp)= dζ∗(yp)

dyp
=
(√

2ϕ(
√

2n(u))
σ

)
n′(u).

Note also that if gY (x) = 1, fYd |Yp=yp(x) = ∫∞
−∞ fYd |Y=y(x)fY=y|Yp=yp(y)dy =

1√
2σ
ϕ
(

x−yp√
2σ

)
and FYd |Yp=yp(x) = �

(
x−yp√

2σ

)
. Since dζ∗(yp)

dyp
=
(√

2ϕ(
√

2n(u))
σ

)
n′(u), ϕ

(
�−1(ζ ∗(yp))

) = ϕ
(√

2n(u)
)

, and h
(
�−1(ζ ∗(yp))−

√
2yp
σ

)
=

h
(√

2(n(u)−u)
)

, in order to establish Equation (A7), it suffices to
show that n(u) is defined by the following σ -independent differential
equation:

n′ (u) = 1

2

⎛⎝1 −
ϕ
(√

2n (u)
)

κh
(√

2 (n (u)− u)
)
⎞⎠−1

= 1

2
+ 1

2

(
�(

√
2 (u − n (u)))

κe2un(u)−u2 −�(
√

2 (u − n (u)))

)
. (A8)

To show this, we begin with Equation (A6). Note that in equilibrium, beliefs
must be consistent. Thus, if the equilibrium were to be fully separating,
b(ζ ∗(yp)) = yp. This means

Pr(Y > 0|Yp = yp, Yd = γb(ζ∗(yp))

(
ζ ∗ (yp

))
)

= Pr(Y > 0|Yp = yp, Yd = γyp

(
ζ ∗ (yp

))
)

= ζ ∗ (yp
)

by Equation (A3). Thus, we have(
κ

(
dγb(τ ) (τ )

dτ
|τ=ζ∗(yp)

))−1

= fYd |Yp=yp

(
γyp

(
ζ ∗ (yp

)))
1 − FYd |Yp=yp

(
γyp

(
ζ ∗ (yp

)))
= 1√

2σ

⎡⎢⎣ ϕ
(
γyp(ζ

∗(yp))−yp√
2σ

)
1 −�

(
γyp(ζ∗(yp))−yp√

2σ

)
⎤⎥⎦

= 1√
2σ

h

(
γyp

(
ζ ∗ (yp

))− yp√
2σ

)
. (A9)

By Lemma A2,
dγb(τ )(τ )

dτ |τ=ζ∗(yp) =
√

2σ
ϕ(�−1(ζ∗(yp)))

− b′(τ )|τ=ζ∗(yp). Note

that b′(τ )|τ=ζ∗(yp) = 1
ζ∗′(yp)

at equilibrium as long as there is a unique yp
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whose equilibrium demand is ζ ∗ (yp
)
. This is because at equilibrium, we

have b(ζ ∗ (yp
)
) = yp by belief consistency. Differentiating both sides by

yp, we get b′(ζ ∗ (yp
)
)
(
ζ ∗′ (yp

)) = 1. Therefore,(
dγb(τ ) (τ )

dτ
|τ=ζ∗(yp)

)
=

√
2σ

ϕ
(
�−1

(
ζ ∗ (yp

))) − 1

ζ ∗′ (yp
) . (A10)

Equation (A10) can be rewritten as(
dγb(τ ) (τ )

dτ
|τ=ζ∗(yp)

)
=

√
2σ

ϕ
(√

2n(u)
) (1 − 1

2n′ (u)

)
. (A11)

Similarly,

γyp

(
ζ ∗(yp)

)− yp√
2σ

=
(√

2σ�−1
(
ζ ∗ (yp

))− b
(
ζ ∗(yp)

))− yp√
2σ

=
√

2σ�−1
(
ζ ∗ (yp

))− 2yp√
2σ

= √
2(n (u)− u).

Therefore, Equation (A9) becomes⎛⎝ √
2κσ

ϕ
(√

2n(u)
) (1 − 1

2n′ (u)

)⎞⎠−1

= 1√
2σ

h
(√

2(n (u)− u)
)

,

which simplifies to Equation (A8). The lemma is proved. �

The Plaintiff’s Optimal Settlement Demand Strategy (Interior Solutions).

Equation (A7) admits a family of solutions depending on the boundary
value ζ ∗ (0) = c. For example, c = 1

2 means that the plaintiff who observes
0 asks for 1

2 (θH − θL) + (Cd + θL). We will use ζ ∗
κ ,c

(
yp
)

to denote the
solution to Equation (A7) when ζ ∗ (0) = c and given κ . Likewise, let
β∗
κ ,c (τ ) be the consistent belief function. (Without any confusion, we will

continue to use ζ ∗ (yp
)

when the specific parameter value and the initial
condition are not germane to the discussion.) Although there is no closed-
form solution for ζ ∗

κ ,c

(
yp
)
, we can show the following properties about

ζ ∗
κ ,c

(
yp
)
.
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LEMMA A4. The Plaintiff’s Optimal Settlement Demand Strategy (Interior
Solutions). For all positive parameter values of κ and suitable boundary

values, there exists a unique solution to Equation (A7), which is continuously

differentiable and strictly increasing in the plaintiff type. Specifically, the

following statements are true.

(a) When litigation is expensive (κ � 1), for each κ ∈ [1, ∞) and each

c ∈ (0, 1), there exists a unique and well-defined ζ ∗
κ ,c

(
yp
)
;

(b) when litigation is inexpensive (κ < 1), for each κ ∈ (0, 1), there

exists cκ ∈ (0, 1) such that there exists a unique and well-defined

ζ ∗
κ ,c

(
yp
)

for each c ∈ [cκ , 1), but not for c ∈ (0, cκ);
(c) each ζ ∗

κ ,c

(
yp
)

is continuously differentiable and strictly increasing

in yp; and

(d) limyp→∞ ζ ∗
κ ,c

(
yp
) = 1 and limyp→−∞ ζ ∗

κ ,c

(
yp
) = 0.

Lemma A4 states that when litigation is expensive, a solution to Equa-
tion (A7) exists for any c ∈ (0, 1). By contrast, when litigation is
inexpensive, c cannot be too small (too close to 0).30 Thus, if we let 1 ≡
{(κ , c) | 0 < κ < 1, cκ � c < 1} and 2 ≡ {(κ , c) | 1 � κ , 0 < c < 1},
then 1 ∪ 2 is the set of (κ , c) such that a unique and well-
defined ζ ∗

κ ,c

(
yp
)

exists. 1 contains the inexpensive litigation cases and
2 contains the expensive litigation cases. We will restrict our atten-
tion to 1 ∪ 2. We include the proof of Lemma A4 in the Online
Appendix.

Figure A1 plots ζ ∗
κ ,c

(
yp
)

under two different boundary values. In the left
panel, the plaintiff with type 0 demands τ = 0.5 and in the right panel, she
demands τ that is very close to zero ( erf(−4)+1

2 , which is less than 10−8).
Both graphs are strictly increasing even though the graph in the right panel
looks flat to the left.

The Plaintiff’s Expected Utility under the (Interior) Optimal Settlement

Demand Strategy. Given ζ ∗
κ ,c

(
yp
)
, the interior optimal settlement demand

for the plaintiff, we can now calculate the plaintiff’s expected utility by

30. If the initial condition is too small, then the differential equation will not have
a uniquely determined solution because of singularities.
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FigureA1. The Plaintiff’s Optimal Settlement Demand ζ ∗(yp) (Interior Solution)
as a Function of the Plaintiff’s Signal (σ = 1, Cp = Cd = 1/3 = θL = 1 − θH , and
c = 0.5, erf(−4)+1

2 ).

plugging in τ = ζ ∗
κ ,c(yp) and b(τ ) = β∗

κ ,c (τ ) into the plaintiff’s util-
ity function in Equation (A4). For γb(τ ) (τ ), we plug in (per Lemma
A2) γβ∗

κ ,c(ζ∗
κ ,c(yp))

(
ζ ∗
κ ,c(yp)

) = √
2σ�−1

(
ζ ∗
κ ,c(yp)

) − β∗
κ ,c

(
ζ ∗
κ ,c(yp)

) =√
2σ�−1

(
ζ ∗
κ ,c(yp)

)− yp.
Figure A2 depicts the expected utility for two different boundary values.

c = 0.5 for the left panel and c = erf(−4)+1
2 for the right panel. The graphs

show that the plaintiff’s expected utility is increasing in her type. The dashed
horizontal lines are drawn at Cd + θL, the plaintiff’s payoff when τ = 0.
Even though the left side of the graph on the right panel appears to coincide
with this payoff, this portion actually lies strictly under (but very close to)
Cd + θL and the graph will eventually go down toward θL − Cp (which
happens to be 0 in this case) as we move further to the left. Exactly how
far to the left we must move before the graph goes down toward 0 will
depend on the boundary value. Figure A2 shows that the plaintiff is better
off demanding τ = 0 when it receives a signal below some threshold y0,
where y0 is the unique yp value at which the plaintiff’s expected utility for
demanding ζ ∗ (yp

)
equals Cd + θL, and this value is always greater than 0

when litigation is expensive. Above this signal, the plaintiff should demand
ζ ∗(yp). In the Online Appendix, we analytically establish these features of
the plaintiff’s expected utility under ζ ∗

κ ,c(yp) consistent with these graphs.
We summarize the results in Lemma A5.

LEMMA A5. The Plaintiff’s Expected Utility under her Interior Optimal
Settlement Demand.When the plaintiff’s settlement demand is characterized
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FigureA2. The Plaintiff’s Expected Utility under ζ ∗ (yp
)
(σ = 1, Cp = Cd = 1/3 =

θL = 1 − θH , and c = 0.5, erf(−4)+1
2 ).

by Equation (A7), we have the following results. First, whether litigation is

expensive or inexpensive, each plaintiff’s expected payoff (according to the

interior optimal settlement demand for a specified boundary condition) is

strictly increasing in the plaintiff type. Second, the plaintiff’s expected payoff

will approach Cd + θH as the plaintiff type increases, and will approach

θL − Cp as the plaintiff type decreases. Third, each plaintiff’s expected

payoff is strictly decreasing in the boundary value. In other words, the more

aggressively each plaintiff type demands, the smaller will be the payoff.

Fourth, the fraction of plaintiffs whose expected payoffs are smaller than

the corner-solution payoff, Cd +θL, will also be increasing in c. Fifth, when

litigation is expensive, for the plaintiff types less than or equal to 0, their

expected payoffs are smaller than the corner-solution payoff, Cd + θL, and

their payoffs will all increase and approach Cd + θL from below as the

boundary value approaches 0.

According to Lemma A5, as the plaintiff’s type goes to positive infinity,
her expected utility monotonically approaches Cd +θH , which is equivalent
to extracting all possible rents from the defendant (that is, τ = 1). As the
plaintiff’s type gets low, her expected utility approaches θL − Cp, which is
equal to the expected value of going to trial for type negative infinity. Note
that this value is strictly lower than Cd +θL, which is the payoff the plaintiff
can extract by simply demanding τ = 0. For this reason, there cannot be
any fully-separating equilibrium satisfying Equation (A7), as stated below
in Corollary A1.
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COROLLARY A1. There is no fully separating equilibrium (that is everywhere

differentiable).

Lemma A5 also indicates that when litigation is expensive, the threshold
plaintiff type will always be greater than 0. In other words, when litigation
is expensive, a plaintiff who believes there is a 50–50 chance that his case
is of high merit will prefer to demand τ = 0. Finally, Lemma A5 says that
as the boundary value increases, the expected payoff of every plaintiff type
will decrease and the threshold plaintiff type—who is indifferent between
demanding ζ ∗

κ ,c

(
yp
)

and 0—will decrease as well.

Perfect Bayesian Equilibria under the Plaintiff-Offer Model. We are now
ready to characterize a class of semi-pooling perfect Bayesian equilibria.
But before we do that, we show that complete pooling equilibria do not
exist.

LEMMA A6. Under the assumption that the support for any off-the-

equilibrium-path belief is either a singleton or a continuous subset of R,
there does not exist any complete pooling equilibrium.

Proof of Lemma A6. We first establish that if any complete pooling equi-
librium existed, it must be at τ ∗ = 0 only and for the case when litigation
costs are expensive. Suppose there is a complete pooling equilibrium for
some τ ∗ > 0. This means that every plaintiff type demands τ ∗, and the
demand is not informative for the defendant. Then each defendant will
assume that the distribution of the plaintiff type is normal around his own
signal. But then however low τ ∗ may be, as long as it is strictly positive,
at some point, there will be a defendant whose type yd is so low (i.e., a
very strong defendant) that he would still prefer to go to trial rather than
settle at τ ∗. This is because with a complete pooling equilibrium, such a
defendant will infer that the plaintiff types are distributed around his low
signal. Thus, there exists ỹd(τ

∗) such that all defendants whose types are
lower than ỹd(τ

∗) will want to go to trial when faced with the demand τ ∗.
This means there exists a plaintiff whose type is sufficiently lower than
ỹd(τ

∗) that she believes most of the likely defendant types she will face
(who she believes are distributed normally around her low yp) will want
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to go to trial. Given her weak signal, she then has an incentive to devi-
ate to τ = 0. Therefore, if any complete pooling equilibrium existed, it
must be at τ ∗ = 0 only. This pooling, however, cannot be sustained if
litigation costs are cheap since a very high type plaintiff will want to devi-
ate, and her minimum expected payoff (i.e., if every defendant were to
choose to go to trial with her) can still be chosen to be arbitrarily close
to θH − Cp, which will be greater than Cd + θL when litigation costs are
cheap.

Suppose now that there exists a complete pooling equilibrium at τ ∗ = 0
and litigation costs are expensive. Consider a possible point of deviation
τ ′ ∈ (0, 1) and let� be the support of b(τ ′). As mentioned in the main text,
� will not depend on defendant type. Rather, defendant type will affect
b(τ ′), the specific distribution of plaintiff types over �. Specifically, for a
defendant of type yd , his belief b(τ ′) will either be a point belief (in which
case, the belief is the same across all defendant types), or a truncated normal
distribution, which is constructed by taking a normal distribution around yd ,
truncating all areas lying outside �, and re-normalizing by dividing by the
measure of �. We show that regardless of how � is specified, as long as
it is a continuous subset of R, there will always be a threshold yd type,
ỹd(τ

′), such that all defendants observing greater than ỹd(τ
′) prefer to settle

with the demand τ ′ (given b(τ ′)). This is straightforward if � is bounded
below. For example, if � is bounded below by yp,0 ∈ R, then the best
outcome a defendant of type yd can do in going to trial against τ ′ is to
assume that the plaintiff type is yp,0. But even this best trial outcome will be
dominated by settling for τ ′ when yd becomes sufficiently high. Suppose
now � is not bounded below. Then we have two cases: � = R or � is
bounded above. If � = R, then the defendant’s expected payout of going
to trial will monotonically approach θH + Cd as yd goes to infinity, and
thus, ỹd(τ

′) must exist. If � is bounded above by, say, yp,1 ∈ R, we need to
show that the defendant’s subjective probability that the case is high merit,
Pr(Y > 0|Yp < yp,1, Yd = yd), approaches 1 as yd goes to positive infinity.
Specifically, we need to show that

lim
yd→∞

∫ yp,1

−∞
Pr(Y > 0|Yp = yp, Yd = yd)

⎛⎝ ϕ
(

yp−yd√
2σ

)
√

2σ�
(

yp,1−yd√
2σ

)
⎞⎠ dyp = 1.
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To show this, let u = yp/σ , v = yd/σ , and u1 = yp,1/σ . Then,

∫ yp,1

−∞
Pr(Y > 0|Yp = yp, Yd = yd)

⎛⎝ ϕ
(

yp−yd√
2σ

)
√

2σ�
(

yp,1−yd√
2σ

)
⎞⎠ dyp

=
∫ yp,1

−∞
�

(
yp + yd√

2σ

)⎛⎝ ϕ
(

yp−yd√
2σ

)
√

2σ�
(

yp,1−yd√
2σ

)
⎞⎠ dyp

=
∫ u1
−∞�

(
u+v√

2

)
ϕ
(

u−v√
2

)
du

√
2�
(

u1−v√
2

)

=
∫ u1−v√

2
−∞ �

(
w + √

2v
)
ϕ (w) dw

�
(

u1−v√
2

) ,

where w = u−v√
2

.Then the desired limit is equal to lim
v→∞

⎛⎝∫ u1−v√
2−∞ �(w+√

2v)ϕ(w)dw

�
(

u1−v√
2

)
⎞⎠.

Both the numerator and the denominator go to zero. Using L’Hôpital’s rule
we have

lim
v→∞

⎛⎜⎜⎝
∫ u1−v√

2
−∞ �

(
w + √

2v
)
ϕ (w) dw

�
(

u1−v√
2

)
⎞⎟⎟⎠ =

lim
v→∞

d

⎛⎝∫ u1−v√
2−∞ �(w+√

2v)ϕ(w)dw

⎞⎠
dv

lim
v→∞ − 1√

2
ϕ
(

u1−v√
2

)

=
lim

v→∞

(∫ u1−v√
2

−∞
√

2ϕ
(

w + √
2v
)
ϕ (w) dw − 1√

2
�
(

u1+v√
2

)
ϕ
(

u1−v√
2

))
lim

v→∞ − 1√
2
ϕ
(

u1−v√
2

)

= lim
v→∞�

(
u1 + v√

2

)
− √

2 lim
v→∞

⎛⎜⎜⎝
∫ u1−v√

2
−∞

√
2ϕ
(

w + √
2v
)
ϕ (w) dw

ϕ
(

u1−v√
2

)
⎞⎟⎟⎠ .

The first term clearly goes to 1. So it suffices to prove that the sec-
ond term vanishes. Note that the numerator of the fraction simplifies as
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follows:∫ u1−v√
2

−∞

√
2ϕ
(

w + √
2v
)
ϕ (w) dw

=
∫ u1−v√

2

−∞

√
2ϕ
(

v + √
2w
)
ϕ (v) dw = ϕ (v)

∫ u1

−∞
ϕ (z) dz

= ϕ (v)� (u1) ,

where z = v + √
2w. Thus, the fraction inside the parentheses becomes

ϕ(v)�(u1)

ϕ
(

u1−v√
2

) = �(u1) e
u2

1
4 − u1v

2 − v2
4 , which clearly vanishes as v approaches

infinity. �

PROPOSITION 1. Perfect Bayesian Equilibria under the P-Model. In the

P-model, for each
(
Cp, Cd , θL, θH

) ∈ (0, 1)2 × [0, 1) × (0, 1] such that

0 � θL < θH � 1, there is a one-parameter class of semi-pooling perfect

Bayesian equilibria, each of which satisfies the following. First, the plaintiff

demands Cd + θL for all yp � y0 (where y0 is the unique yp value at which

the expected utility of the plaintiff observing yp and demanding accord-

ing to the interior solution would equal Cd + θL).31Second, the plaintiff’s

demand is characterized by a jump discontinuity at yp = y0 and increases

continuously for yp > y0. The defendant holds the following beliefs: for

S ∈ (Cd+θL, Cd+θH ), the defendant has a point belief that is consistent with

the interior optimal demand strategy; for S = Cd +θL the defendant’s belief

is a truncated normal probability distribution, which is zero for yp > y0

but takes on
ϕ1

( yp−yd√
2σ

)
√

2σ�
(

y0−yd√
2σ

) for yp � y0, where �(·) is the standard normal

cumulative distribution function; for S ∈ (−∞, Cd + θL) ∪ [Cd + θH , ∞),
virtually any belief is possible because this strategy is strictly dominated

for all plaintiff types.

Proof of Proposition 1. Specifically, we show that for every (κ , c) ∈
1 ∪ 2, there exists a semi-pooling perfect Bayesian equilibrium that

31. We assume that if the plaintiff is indifferent between demanding θL + Cd or
some amount greater than this value, then she will demand θL + Cd .
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Litigation and Selection 433

satisfies the following. First, s∗
κ ,c

(
yp
) = 0 for all yp � y0

κ ,c and
ζ ∗
κ ,c

(
yp
)

for all yp > y0
κ ,c. Given the plaintiff’s equilibrium settlement

demand, the defendant’s belief function follows immediately. To show the
plaintiff’s equilibrium settlement demand, note that a plaintiff whose type
yp is greater than y0 will (i) not want to deviate to τ � 0 since her expected
utility is higher under ζ ∗ (yp

)
by construction, (ii) not mimic other plain-

tiff types on the equilibrium by choosing some other τ ∈ (0, 1) because
the first-order condition was satisfied at τ = ζ ∗ (yp

)
, and (iii) not deviate

to τ � 1 because that will lead to trial with certainty and thus to lower
expected utility. A plaintiff whose type yp is less than or equal y0 will neces-
sarily choose τ = 0 (which will be accepted with certainty). That strategy
dominates any τ ∈ (−∞, 0)∪ [1, ∞) because the plaintiff will end up with
a higher settlement amount. It will also dominate τ = ζ ∗ (yp

)
by construc-

tion (see Figure A2), which in turn dominates any other τ ∈ (0, 1) because
the first-order condition was satisfied at τ = ζ ∗ (yp

)
. The defendant’s belief

function is consistent on the equilibrium path and he is minimizing his
payout. �

Equilibrium Refinement. In this section, we prove the following lemma.

LEMMA A7 (Equilibrium Refinement).

(a) Each semi-pooling equilibrium corresponding to (κ , c) ∈ 1 ∪ 2

survives the “intuitive” criterion under Cho and Kreps (1987);
(b) none of them survive D1 under Banks and Sobel (1987);

(c) only the equilibrium corresponding to (κ , cκ), where κ ∈ (0, 1) and

cκ is the lowest feasible boundary value for such κ , is “undefeated”

under Mailath et al. (1993).

Proof of Lemma A7. Given a plaintiff’s demand of τ ∈ (0, ζ ∗ (y0
)
), we

first consider the possibility of all defendant types simply accepting, which
would be the best possible outcome for any plaintiff who chooses to demand
τ . Note that even in such a scenario, there will still be some very strong
plaintiff types (types much higher than y0)who would prefer to stay at their
current equilibrium payoff and risk some trials. This is because according
to Lemma A5, as yp increases, the plaintiff can extract an amount very close

D
ow

nloaded from
 https://academ

ic.oup.com
/aler/article-abstract/20/2/382/5113390 by Serials Section N

orris M
edical Library user on 17 January 2019



434 American Law and Economics Review V20 N2 2018 (382–459)

to Cd + θH , which is equivalent to settling at τ very close to 1. Therefore,
settling at any τ ∈ (0, ζ ∗ (y0

))
(even with certainty) will be dominated by

the equilibrium payoff for some very strong plaintiff types. Our off-the-
equilibrium-path belief specification places zero weight on all such high
plaintiff types. This is clear since the off-the-equilibrium-path belief places
weights only on plaintiff types below y0.

Now we ask whether there is some plaintiff type whose equilibrium
payoff is lower than the minimum possible outcome from choosing τ ∈
(0, ζ ∗ (y0

)
), which would be if all defendant types simply rejected (i.e.,

always ending in a trial against every defendant type). The answer here
is no. No plaintiff type will ever prefer trial-against-every-defendant-type
to what she is getting under the current equilibrium payoff, for the same
reason that no plaintiff wishes to demand τ = 1 from Lemma A1. Hence,
the “intuitive” criterion is satisfied and (a) is proved.

To show (b), note that D1 would require the defendant to believe that
any plaintiff making any off-the-equilibrium demand between τ = 0 and
τ = ζ ∗

κ ,c

(
y0
)
will necessarily be the threshold plaintiff, yp = y0. The

belief specification would therefore have to be modified. The question
then is whether this threshold plaintiff, who at equilibrium is indifferent
between demanding τ = 0 or τ = ζ ∗

κ ,c

(
y0
)
, will now have an incen-

tive to deviate and demand τ ∈ (0, ζ ∗
κ ,c

(
y0
))

if he is guaranteed that his
type y0 will be truthfully revealed to the defendant even when he devi-
ates to an off-the-equilibrium demand? The answer turns out to be yes:
such specification of the defendant’s belief will in fact incentivize the
threshold plaintiff to want to deviate to τ ∈ (

0, ζ ∗
κ ,c

(
y0
))

. To see this,
recall that the expected utility function for the threshold plaintiff is given
by Equation (A5). But we now have a revised belief function, which is
that b (τ ) = y0 for all τ ∈ (0, ζ ∗

κ ,c

(
y0
)]. Thus, for this range of settle-

ment demands, the expected utility function of plaintiff type y0 can be
rewritten as

Up
(
y0, τ ; y0) = (θH − θL)

×
[(∫ γy0 (τ )

−∞
�

(
y0 + yd√

2σ

)
fYd |Yp=y0(yd)dyd

)
+
(

1 − FYd |Yp=y0
(
γy0 (τ )

))
(τ + κ)

]
+ (θL − Cp

)
.
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When we left-differentiate32 this equation with respect to τ , we get

(
1

θH − θL

)
d−Up

(
y0, τ ; y0

)
dτ

=
(

1 − FYd |Yp=y0
(
γy0 (τ )

))− κfYd |Yp=y0
(
γy0 (τ )

) (dγy0 (τ )

dτ

)
.

Since �
(

yp+γyp (τ )√
2σ

)
= τ , γyp (τ ) = √

2σ�−1 (τ ) − yp and
dγyp (τ )

dτ =
√

2σ
ϕ(�−1(τ ))

= dγb(τ )(τ )

dτ + b′(τ ). Therefore, the above expression evaluated

at τ = ζ ∗
κ ,c

(
y0
)

becomes

(
1

θH − θL

)
d−Up

(
y0, τ ; y0

)
dτ

=
(

1 − FYd |Yp=y0
(
γy0
(
ζ ∗
κ ,c

(
y0))))

− κfYd |Yp=y0
(
γyp

(
ζ ∗
κ ,c

(
y0))) (dγy0 (τ )

dτ

)
|τ=ζ∗

κ ,c(y0)

=
(

1 − FYd |Yp=y0
(
γy0
(
ζ ∗
κ ,c

(
y0))))

− κfYd |Yp=y0
(
γy0
(
ζ ∗
κ ,c

(
y0))) (dγβ∗(τ ) (τ )

dτ
+ dβ∗ (τ )

dτ

)
|τ=ζ∗

κ ,c(y0)

= A − κfYd |Yp=y0
(
γy0
(
ζ ∗
κ ,c

(
y0))) dβ∗ (τ )

dτ
|τ=ζ∗

κ ,c(y0),

where β∗ (τ ) is the equilibrium belief function from the interior solution
and

A =
(

1 − FYd |Yp=y0
(
γy0
(
ζ ∗
κ ,c

(
y0))))

− κfYd |Yp=y0
(
γy0
(
ζ ∗
κ ,c

(
y0))) (dγβ∗(τ ) (τ )

dτ

)
|τ=ζ∗

κ ,c(y0).

32. We cannot right-differentiate this expression since it is only valid from the
left-limit.
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But by Equation (A6), A = 0. Therefore, the first-order condition becomes(
1

θH − θL

)
d−Up

(
y0, τ ; y0

)
dτ

= −κfYd |Yp=y0
(
γy0
(
ζ ∗
κ ,c

(
y0))) dβ∗ (τ )

dτ
|τ=ζ∗

κ ,c(y0),

which is negative since dβ∗(τ )
dτ > 0. In other words, the left-derivative of the

plaintiff’s expected utility is negative, and therefore, the expected utility is
decreasing in τ as we approach from the left. Therefore, the plaintiff who
was originally indifferent between τ = 0 and τ = ζ ∗

κ ,c

(
y0
)

will, under the
revised belief specification, have an incentive to deviate to a demand value
slightly smaller than ζ ∗

κ ,c

(
y0
)
. Therefore, we do not have an equilibrium.

To show (c), recall that Mailath et al. (1993) defines the undefeated
equilibrium as follows (p. 254).

DEFINITION A1. σ ∗ = (μ∗, ρ∗,β∗) is a pure strategy sequential equilibrium

if:

(D1.1) ∀t ∈ T : μ∗ (t) ∈ argmaxm∈M u(m, ρ∗ (m) , t);
(D1.2) ∀m ∈ M : ρ∗ (m) = BR (m,β∗ (m));
(D1.3) ∀t ∈ T and m ∈ M : β∗ (t|m) = p (t) μ∗(m|t)/∑t′∈T p

(
t′
)
μ∗

(m|t′) if the denominator is positive, where μ∗ (m|t) = 1 if
μ∗ (t) = m and 0 otherwise.

Here, the notations are standard. μ : T → M is the sender’s strategy,
ρ : M → R is the receiver’s response strategy, and β : M → �T is the
receiver’s belief function (where�T is the set of all probability distributions
on set T ). t ∈ T is sender’s type, and u(σ , t) is the sender type t’s payoff
associated with σ (with an abuse of notation), and p(t) is the common
knowledge prior probability of t ∈ T . Now denote the set of pure strategy
sequential equilibria for the game G by PSE(G).

DEFINITION A2. σ ≡ (μ, ρ,β) ∈ PSE(G) defeats σ ′ ≡ (μ′, ρ ′,β ′) ∈
PSE(G) if ∃m ∈ M such that:

(D2.1) ∀t ∈ T : μ′(t) 
= m, and K ≡ {t ∈ T |μ(t) = m} 
= ∅;
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(D2.2) ∀t ∈ K : u(σ , t) � u(σ ′, t), and ∃t ∈ K : u(σ , t) > u(σ ′, t);
and

(D2.3) ∀t ∈ K : β ′(t|m) 
= p(t)π(t)/
∑

t′∈T p(t′)π(t′) for any

π : T → [0, 1] satisfying t′ ∈ K and u(σ , t′) > u(σ ′, t′) ⇒
π(t′) = 1, and t′ /∈ K ⇒ π(t′) = 0.

Under this set-up, a perfect sequential equilibrium σ ∈ PSE(G) is
undefeated if there does not exist σ ′ ∈ PSE(G) that defeats σ .

In order to apply this refinement criterion to our game, we have to
modify (D1.3) and (D2.3) slightly because once the respective signals are
observed, the parties no longer have a common prior regarding the plaintiff
type distribution. Therefore, we replace p (t) with fYp|Yd=yd (t), which is the
defendant’s conditional probability density that the plaintiff is type t after
having observed signal yd .

We now show that, given two semi-pooling equilibria with (κ , c) and
(κ , c′) where c < c′, the (κ , c)-equilibrium defeats the (κ , c′)-equilibrium.
In our semi-pooling equilibria, given a nontrivial settlement demand amount
(i.e., τ > 0), there is either a unique plaintiff type who would demand it
or no plaintiff would demand it. Therefore, β∗ (t|m) will always be either
0 or 1.

To show (D2.1), note first that since c < c′, we have y0
κ ,c < y0

κ ,c′ (see
proof of Lemma A5 in the Online Appendix). Now pick any z ∈ (y0

κ ,c, y0
κ ,c′).

Then we have μ′ (z) ≡ s∗
κ ,c′ (z) = 0 but μ (z) ≡ s∗

κ ,c (z) = ζ ∗
κ ,c (z) > 0.

Meanwhile, m = ζ ∗
κ ,c (z) < ζ ∗

κ ,c(y
0
κ ,c′) < ζ ∗

κ ,c′(y0
κ ,c′), which implies that

m = ζ ∗
κ ,c (z) is not a message that is observed in the (κ , c′)-equilibrium

since ζ ∗
κ ,c′(y0

κ ,c′) is the smallest positive demand that is made under that
equilibrium. Now let K = {z}, and (D2.1) is established. To show (D2.2), the
first part is established by LemmaA5, and the second part is established since
u (σ , t) ≡ Up

(
z, ζ ∗

κ ,c (z) ;β∗
κ ,c(τ )

)
> Up

(
y0
κ ,c, ζ ∗

κ ,c

(
y0
κ ,c

)
; β∗

κ ,c(τ )
) = Cd +

θL = Up

(
z, 0;β∗

κ ,c′(τ )
)

= Up

(
z, s∗

κ ,c′ (z) ;β∗
κ ,c′(τ )

)
≡ u

(
σ ′, t

)
. Finally, to

show (D2.3), note that since K = {z}, we will have π(yp) = 1 if yp = z and
π(yp) = 0 for all other values of yp. At this point, note that we also have

β∗ (t|m) ≡ β∗ (z|ζ ∗
κ ,c (z)

) = 1 = fYp|Yd=yd (z) μ
∗ (ζ ∗

κ ,c (z) | z
)∑

t′∈T fYp|Yd=yd (t
′) μ∗ (ζ ∗

κ ,c (z) | t′
) ,
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since ζ ∗
κ ,c (z) lies on the separating portion, and therefore μ∗ (ζ ∗

κ ,c (z) | t′
) =

0 for all t′ except for t′ = z.
But β ′∗ (t|m) ≡ β ′∗ (z|ζ ∗

κ ,c (z)
) = 0 under our belief specification since

ζ ∗
κ ,c′−1

(
ζ ∗
κ ,c (z)

) 
= z. And therefore,

β ′∗ (t|m) ≡ β ′∗ (z|ζ ∗
κ ,c (z)

) = 0 
= 1 = fYp|Yd=yd (z) π (z)∑
t′∈T β

∗ (t′|ζ ∗
κ ,c (z)

)
π (t′)

.

So we have (D2.3). �

The Probability of Rejection for Each Demand. Let ρ(τ ; yp) be the prob-
ability that a plaintiff of type yp expects the defendant to reject a settlement
demand of τ . We can compute ρ(τ ; yp) as follows. Recall that a demand
of τ = 0 will be accepted by all defendant types, and a demand of
τ = 1 will be rejected by all defendant types. For τ ∈ (0, 1), the defen-
dant will reject if and only if yd < γb(τ ) (τ ). Using Lemma A2, we
can write this probability, conditional on the plaintiff’s observing yp, as
follows:

Pr
(
Yd < γb(τ ) (τ ) |Yp = yp

) = FYd |Yp=yp

(√
2σ�−1 (τ )− b∗

κ ,c (τ )
)

= �

(√
2σ�−1 (τ )− ζ ∗

κ ,c
−1 (τ )− yp√

2σ

)
.

Therefore, we have

ρ
(
τ ; yp

) =

⎧⎪⎪⎨⎪⎪⎩
0 if τ = 0,

�

(√
2σ�−1(τ )−ζ∗

κ ,c
−1(τ )−yp√

2σ

)
if τ ∈ (0, 1) , and

1 if τ = 1.

From the functional form, it is immediate that the higher the plaintiff type the
lower the probability of rejection for demanding the same settlement amount
τ . It turns out that ρ

(
τ ; yp

)
is strictly increasing in τ but is characterized

by jump discontinuities at both ends (at τ = 0 and τ = 1). Specifically, we
have the following.

LEMMA A8. ρ
(
τ ; yp

)
is strictly increasing but is characterized by jump

discontinuities at both ends.
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Proof of Lemma A8. For τ ∈ (0, 1),ρ
(
τ ; yp

) = �

(√
2σ�−1(τ )−ζ∗

κ ,c
−1(τ )−yp√

2σ

)
.

If we substitute τ = ζ ∗
κ ,c(y

′
p), it suffices to analyze the behavior of

ρ
(
ζ ∗
κ ,c(y

′
p); yp

)
because τ is an increasing function in y′

p (Lemma A4),
and ζ ∗

κ ,c(y
′
p) spans all of (0, 1) as y′

p goes from negative infinity to positive
infinity (Lemma A4). Rewriting y′

p = σu′, we have

ρ
(
τ ; yp

) = ρ
(
ζ ∗
κ ,c(y

′
p); yp

)
= ρ

(
ζ ∗
κ ,c(σu′); σu

)
= �

(√
2σ�−1

(
ζ ∗
κ ,c(σu′)

)− ζ ∗
κ ,c

−1
(
ζ ∗
κ ,c(σu′)

)− σu√
2σ

)

= �

((
2n(u′)− u′)− u√

2

)
.

By Lemma A9, 2n(u′) − u′ is a strictly increasing function in u′ which
is bounded above and below by two horizontal asymptotes. Therefore,
ρ
(
τ ; yp

)
is strictly increasing in τ , but for any fixed u, the argument,

(2n(u′)−u′)−u√
2

, will not approach either negative infinity or positive infinity in

either direction, and hence ρ
(
τ ; yp

)
is discontinuous at both end points. �

Selection Implications. To analyze the selection implications, we first con-
sider whether a particular pair of (yp, yd) will go to trial, and then consider
the probability that a dispute of merit y will signal as yp to the plaintiff and
yd to the defendant.

Note that since every defendant type will accept the settlement demand
of τ = 0, no plaintiff whose type is less than or equal to y0

κ ,c will ever
go to trial. In addition, according to Proposition 1, any equilibrium settle-
ment demand greater than 0 must lie on the separating portion of the offer
curve. Thus, if τ > 0, then τ ∈ (ζ ∗

κ ,c(y
0
κ ,c), 1). On this portion of settle-

ment demand, a dispute will go to trial if and only if yd < γb(τ ) (τ ) =
γb∗

κ ,c(s∗κ ,c(yp))

(
s∗
κ ,c

(
yp
)) = √

2σ�−1
(
ζ ∗
κ ,c

(
yp
)) − yp. Therefore, the set of(

yp, yd
)

that will result in a trial is as follows:

Rσ
(
yp, yd

) =
{(

yp, yd
) |yd <

√
2σ�−1 (ζ ∗

κ ,c

(
yp
))− yp and yp � y0

κ ,c

}
.
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FigureA3. The Litigation Condition Set: yd �
√

2σ�−1
(
ζ ∗
κ ,c

(
yp
))−yp and yp � y0

(σ = 1, Cp = Cd = 1/3 = θL = 1 − θH , and c = 0.5, erf (−4)+1
2 ).

We will call Rσ
(
yp, yd

)
the litigation condition set.

Figure A3 depicts Rσ
(
yp, yd

)
(the gray area) in the general ypyd-

coordinate. c = 0.5 for the left panel and c = erf(−4)+1
2 for the right

panel. The roughly horizontal curve in the left panel graph is defined by
yd = γyp

(
ζ ∗
κ ,c

(
yp
))

, and depicts the threshold-defendant type that would
reject each plaintiff type’s settlement demand. The same graph is depicted
in the right panel; however, the graph dips below for the left side of the
graph. In general, the right side of this graph will remain largely similar,
but the left side, while remaining nearly flat, will dip below depending on
the initial condition. As c approaches zero, the lower asymptote defining
the boundary of the left side of the graph will approach negative infinity.
The dotted vertical line is drawn at yp = y0

κ ,c. As is expected, litigation
is more likely if yp is high (the plaintiff is confident) and yd is low (the
defendant is confident), because in that case the mismatch between the
plaintiff’s settlement demand and the defendant’s willingness to pay will be
great.

The shape of the threshold-defendant curve merits some discussion.
Consider first the following lemma. The proof is included in the Online
Appendix.

LEMMA A9. In the separating portion of a perfect Bayesian equilibrium,

2n (u)− u is a strictly increasing function in u, and 2n (u)− u has a finite

range for each initial condition n (0) ∈ R. In addition, n (u)−u approaches

negative infinity as u approaches positive infinity, and n (u)−u approaches

positive infinity as u approaches negative infinity.
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Note that the condition yd <
√

2σ�−1
(
ζ ∗
κ ,c

(
yp
)) − yp is equivalent to

v < 2n (u) − u. Thus, according to Lemma A9, the threshold-defendant
curve is strictly increasing in yp but is bounded both above and below
by horizontal asymptotes. The locus of the horizontal asymptotes will
vary with c. As c decreases, the left half of the graph will become more
and more negative (while remaining nearly flat), but the right half of the
graph remains largely unchanged (and remain mostly positive). In fact, as
c approaches 0, the left half of the graph can get arbitrarily negative, and
thus, in the limit, the graph behaves as if it is defined only for yp > 0. Mean-
while, regardless of c, y0

κ ,c will always remain positive when litigation is
expensive.

In other words, there is a threshold-defendant type, y1
d , such that in equi-

librium every defendant weaker than type y1
d will accept every settlement

demand 0 ≤ τ < 1, and a lower threshold defendant type, y0
d < y1

d , such
that in equilibrium every defendant stronger than type y0

d will reject every
nontrivial settlement demand. Part of the reason why we observe this shape
is that the plaintiff’s interior settlement demand, ζ ∗ (yp

)
, is itself charac-

terized by two horizontal asymptotes.33 In equilibrium, all plaintiffs must
make settlement demands against the restriction that all demands τ � 1
will be rejected with certainty and the demand of τ = 0 will be accepted
with certainty. Therefore, even as yp approaches infinity, high-type plaintiffs
must make demands conservatively so as to maintain τ<1 and avoid cer-
tain rejections. In equilibrium, the plaintiff’s conservative demand in turn
motivates sufficiently weak defendants to accept all observed demands. By
contrast, we see that sufficiently confident defendant types will reject all
nontrivial settlement demands in equilibrium.

33. The fact that ζ ∗ (yp
)

is characterized by two horizontal asymptotes indi-

cates that
dζ∗(yp)

dyp
will approach zero in either direction. Note that

dγyp (ζ
∗
κ ,c(yp))

dyp
=(

dγβ∗(τ )(τ )
dτ |τ=ζ∗(yp)

) (
dζ∗(yp)

dyp

)
=

⎛⎝ 1

κhYd |Yp=yp

(
γ
β∗(ζ∗(yp))(ζ

∗(yp))
)
⎞⎠( dζ∗(yp)

dyp

)
,

where hYd |Yp=yp (·) is the hazard rate for fYd |Yp=yp (·). Thus, as long as⎛⎝ 1

κhYd |Yp=yp

(
γ
β∗(ζ∗(yp))(ζ

∗(yp))
)
⎞⎠ does not outpace dζ∗(yp)

dyp
,

dγyp (ζ
∗
κ ,c(yp))

dyp
will likewise

approach zero in either direction.
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Figure A3 shows that the plaintiff trial win rate will be greater than 50%.
This is because Rσ (yp, yd) is not symmetric across the line yd = −yp but is
instead tilted to the first quadrant. In that region, both the plaintiff and the
defendant are observing signals that are favorable to the plaintiff’s ex ante

probability of prevailing at trial. Because the signals are unbiased, cases
above the line yd = −yp are likely to result in plaintiff trial victories, while
cases below the line are likely to result in defendant wins. Note that because
Yp and Yd are unbiased, the density of any point on the graph is symmetric
across the line yd = −yp. As a result, the fact that the portion of the shaded
area above the line yd = −yp is greater than the portion below indicates
that the plaintiff will win more than 50% at trial. In addition, Figure A3
illustrates that extreme cases on both ends are likely to settle and close
cases are more likely to go to trial. Given a particular case whose merit
is y, the probability that it will go to trial is simply the probability that it
will produce signals yp and yd which belong to Rσ (yp, yd). The shape of
Rσ (yp, yd) shows that a necessary condition for a dispute to go to trial is
that yp > y0 and yp < yd,1. But as y becomes high, it is unlikely to produce
yp < yd,1; likewise, as y becomes low, it is unlikely to produce yp > y0.

Meanwhile, Figure A3 also explains that extremely weak and extremely
strong cases are likely to settle for different reasons. Extreme cases in which
y is small will tend to settle because the litigation condition set is bounded
by yp = y0. Thus, the corner solution plays an important role here. On the
other hand, extreme cases to the right of 0 are likely to settle because, as we
discussed, defendants who observe sufficiently weak signals will accept all
equilibrium demands.

The probability that a dispute of merit y will signal (yp, yd) that belongs to
Rσ (yp, yd) can be calculated by placing a bivariate normal distribution above
the planes in Figure A3 (centering it at (y, y)) and calculating the volume
under the surface but above the shaded area only. See Lee and Klerman
(2016). If we let�σ (y) denote the probability that a dispute of merit y will
go to trial, we have

�σ (y) =
∫∫

Rσ (yp,yd)

ϕσ (y − yp)ϕσ (y − yd)dypdyd .

Figure 3 in the main text plots �σ (y). Observe that the graph of �σ (y)
is greater toward the right of 0, consistent with the observed asymmetry
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from Figure A3. Under Priest and Klein’s model, the litigation probability
function is symmetric around 0 (when the plaintiff and the defendant have
the same amount at stake, as here), and symmetry is necessary to lead to the
plaintiff trial win rate of 50% in the limit.34 See Lee and Klerman (2016).
Under our set up, although the plaintiff and the defendant face the same
amount at stake, the litigation probability function is greater toward the right.
Therefore, the plaintiff trial win rate will be higher than 50%. The precise
amount will vary depending on the specific parameters. When gY (x) = 1,
the plaintiff trial win rate can be calculated as (θH − θL)

( ∫∞
0 �σ (y)dy∫∞
−∞�σ (y)dy

)
+θL.

The Defendant-Offer Model

LEMMA A10. The interior solution ζ ∗ (yd) to the defendant-offer model

satisfies the following differential equation:

dζ ∗(yd)

dyd
=
(
ϕ
(
�−1 (ζ ∗ (yd))

)
√

2σ

)⎛⎝1 − ϕ
(
�−1 (ζ ∗ (yd))

)
κh
(√

2yd
σ

−�−1 (ζ ∗ (yd))
)
⎞⎠−1

.

(A12)

Proof of Lemma A10. Let v = yd
σ

and ζ ∗ (yd) = �(
√

2m (v)). We show
that m (v) is defined by the following σ -independent differential equation:

dm(v)

dv
= 1

2

⎛⎝1 −
ϕ
(√

2m (v)
)

κh
(
−√

2 (m (v)− v)
)
⎞⎠−1

. (A13)

which is equivalent to Equation (A12).
We will use analogous notations without redefining them. Thus, b(τ )

denotes the plaintiff’s belief as to the defendant’s type upon receiving a
settlement offer of τ . A rational plaintiff accepts the defendant’s settlement
offer if and only if the defendant’s offer is greater than or equal to the
plaintiff’s expected judgment less cost of going to trial. That is, the plaintiff
will accept if and only if

S � θH�

(
yp + b(τ )√

2σ

)
+ θL

(
1 −�

(
yp + b(τ )√

2σ

))
− Cp.

34. Note that although Priest and Klein assume θL = 1 − θH = 0, the 50% result
will obtain as long as θL = 1 − θH .
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This becomes: τ � �
(

yp+b(τ )√
2σ

)
. Similarly as before, we let γb(τ ) (τ ) be the

threshold plaintiff type below which each plaintiff will accept an offer of τ .
The interim expected utility to the defendant who makes a settlement offer
τ is given by the following equation:

Ud (yd , τ ; b(τ )) = − (θH −θL)×
(∫ ∞

γb(τ )(τ )

�

(
yp + yd√

2σ

)
fYp|Yd=yd

(
yp
)

dyp

+ FYp|Yd=yd

(
γb(τ ) (τ )

)
(τ − κ)

)
− (θL + Cd) . (A14)

Differentiating Equation (A14) with respect to τ using the Chain Rule and
substituting Pr(Y > 0 | Yd = b(τ ), Yp = γb(τ ) (τ )) = τ , we obtain:

dUd (yd , τ ; b(τ ))

dτ
= − (θH −θL)×

(
fYp|Yd=yd

(
γb(τ ) (τ )

) (dγb(τ ) (τ )

dτ

)
(−κ)

+ FYp|Yd=yd

(
γb(τ ) (τ )

) )
. (A15)

From Equation (A15), we have

(
κ

(
dγb(τ ) (τ )

dτ

))−1

= fYp|Yd=yd

(
γb(τ ) (τ )

)
FYp|Yd=yd

(
γb(τ ) (τ )

) = 1√
2σ

ϕ
(
γb(τ )(τ )−yd√

2σ

)
�
(
γb(τ )(τ )−yd√

2σ

)
= 1√

2σ
h

(
yd − γb(τ ) (τ )√

2σ

)
.

As before,
(

dγb(τ )(τ )

dτ |τ=ζ∗(yd )

)
=

√
2σ

ϕ(
√

2m(v))

(
1 − 1

2m′(v)

)
and

yd−γyd (ζ
∗(yd))√

2σ
=

yd−(
√

2σ�−1(ζ∗(yd))−b(ζ∗(yd)))√
2σ

= 2yd−√
2σ�−1(ζ∗(yd))√

2σ
= √

2(v−m (v)). So we
have⎛⎝ √

2σκ

ϕ
(√

2m(v)
) (1 − 1

2m′ (v)

)⎞⎠−1

= 1√
2σ

h
(
−√

2(m(v)− v)
)

,

which simplifies to Equation (A13). �

PROPOSITION 2. The Symmetry Between the P-Model and the D-Model.
When the plaintiff and the defendant face identical litigation costs, the
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litigation probability function of the D-model will be the reflection of the

litigation probability function from the P-model around y = 0. In other

words, for each y ∈ R, the probability that a case of merit y will go to trial

in the P-model is the same as the probability that a case of merit −y will

go to trial in the D-model. Furthermore, if, in addition, θH = 1 − θL, then

the plaintiff trial win rate in the D-model is one minus the plaintiff trial win

rate from the P-model.

Proof of Proposition 2. Let Cd = Cp = C. It suffices to show
that the litigation condition set (the region of integration) for one
model is a reflection of the other across the line v = −u in the uv-
coordinate. Note first that given n(x) which satisfies Equation (A8),
m(x) = −n(−x) will satisfy Equation (A13). This is clear since dm(x)

dx =
− dn(−x)

dx = 1
2

(
1 − ϕ(

√
2n(−x))

κh(
√

2(n(−x)+x))

)−1
= 1

2

(
1 − ϕ(−

√
2m(x))

κh(−
√

2(m(x)−x))

)−1
=

1
2

(
1 − ϕ(

√
2m(x))

κh(−
√

2(m(x)−x))

)−1
, and the last equation is Equation (A13).

Now consider the region of integration for the plaintiff-offer model,
Rp (u, v) and the region for the defendant-offer mode, Rd (u, v). Then
Rp (u, v) = {

(u, v) ∈ R2 | v < 2n (u)− u and u � u0
}

and Rd (u, v) ={
(u, v) ∈ R2 | u > 2m (v)− v and v � v0

}
. u0 is defined implicitly by

(θH − θL)×
[

1√
2

∫ 2n(u0)−u0

−∞
�

(
v + u0

√
2

)
ϕ

(
v − u0

√
2

)
dv

+
(

1 −�
(√

2
(
n
(
u0)− u0))) (� (√2n

(
u0))+ κ

) ]
+ (θL − C) = C + θL

and v0 is defined implicitly by

− (θH −θL)×
[

1√
2

∫ ∞

2m(v0)−v0
�

(
v0 + u√

2

)
ϕ

(
v0 − u√

2

)
du

+�
(√

2
(
m
(
v0)− v0)) (� (√2m

(
v0))− κ

) ]
− (θL + C) = C − θH .
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We can rewrite these conditions as follows:

k
(
u0) ≡ 1√

2

∫ 2n(u0)−u0

−∞
�

(
v + u0

√
2

)
ϕ

(
v − u0

√
2

)
dv

+
(

1 −�
(√

2
(
n
(
u0)− u0))) (� (√2n

(
u0))+ κ

)
= κ

and

l
(
v0) ≡ 1√

2

∫ ∞

2m(v0)−v0
�

(
v0 + u√

2

)
ϕ

(
v0 − u√

2

)
du

+�
(√

2
(
m
(
v0)− v0)) [� (√2m

(
v0))− κ

]
= 1 − κ .

We show that if (u, v) ∈ Rp (u, v), then (−v, −u) ∈ Rd (u, v). If (u, v) ∈
Rp (u, v), then v < 2n (u)−u and u � u0. v < 2n (u)−u = −2m (−u)−u.
Therefore, −v > 2m (−u)− (−u). This last inequality shows that (−v, −u)
satisfies the first of the two constraints to belong to Rd (u, v). To show that
it also satisfies the second constraint, we must show that −u � v0. Since
we already know that u � u0, it suffices to show that u0 = −v0. It suffices
to show that k

(−v0
) = κ if and only if l

(
v0
) = 1 − κ . This is true

because

κ = k
(−v0) = 1√

2

∫ 2n(−v0)+v0

−∞
�

(
v − v0

√
2

)
ϕ

(
v + v0

√
2

)
dv

+
(

1 −�
(√

2
(
n
(−v0)+ v0))) (� (√2n

(−v0))+ κ
)

= 1√
2

∫ −2m(v0)+v0

−∞
�

(
v − v0

√
2

)
ϕ

(
v + v0

√
2

)
dv

+
(

1 −�
(√

2
(−m

(
v0)+ v0))) (� (−√

2m
(
v0))+ κ

)
= 1√

2

∫ ∞

2m(v0)−v0
�

(−u − v0

√
2

)
ϕ

(−u + v0

√
2

)
du

+�
(√

2
(
m
(
v0)− v0)) (1 −�

(√
2m
(
v0))+ κ

)
= 1√

2

∫ ∞

2m(v0)−v0

(
1 −�

(
u + v0

√
2

))
ϕ

(−u + v0

√
2

)
du
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+�
(√

2
(
m
(
v0)− v0)) (1 −�

(√
2m
(
v0))+ κ

)
= 1 − l

(
v0) .

Note that the fourth equality makes use of a change of dummy variable,
v = −u. The proof is complete. �

PROPOSITION 3. The Irrelevance of the Dispute Distribution for the Limit
Results in the Take-It-or-Leave-It Offer Models. Under both the P-model

and the D-model, given a distribution of disputes that is strictly positive,

bounded above, and continuous, if the litigants make naïve inferences, the

plaintiff trial win rate in the limit as σ approaches zero will be equal to the

plaintiff trial win rate obtained when σ = 1 and the distribution of disputes

was assumed to be improper uniform.

Proof of Proposition 3. The logic behind this is similar to the one dis-
cussed in Lee and Klerman (2016). Let u = yp

σ
, v = yd

σ
, z = y

σ
, and u0 = y0

σ
.

We prove the proposition for the P-model, but the same reasoning applies
to the D-model as well. Recall that the litigation probability function can
be calculated according to the following double integral:

�σ (y) =
∫∫

Rσ (yp,yd)

ϕσ (y − yp)ϕσ (y − yd)dypdyd ,

where Rσ (yp, yd) = {(yp, yd) ∈ R2 | yd < (2σ)erf −1(2ζ ∗(yp)− 1)− yp

and yp � y0}.
Rewriting this integral in terms of u and v, we have

�σ (y) = �σ (σ z) =
∫∫

Rσ (u,v)

ϕ (u − z) ϕ (v − z) dudv,

where Rσ (u, v) = {(u, v) ∈ R2 | σv < γσu (ζ
∗ (σu)) = (2σ) erf −1

(2ζ ∗ (σu)− 1)− (σu) and σu � σu0}. It is easy to show that Rσ (u, v) =
R (u, v) ≡ {

(u, v) ∈ R2 | v < 2n (u)− u and u � u0
}
, which is a σ -

independent set. Thus, neither the integrand nor the region of integration
depends on σ . Furthermore, by Lemma A9, 2n (u) − u is bounded above
and R(u, v) is bounded on the left by u = u0. Then by the argument used

D
ow

nloaded from
 https://academ

ic.oup.com
/aler/article-abstract/20/2/382/5113390 by Serials Section N

orris M
edical Library user on 17 January 2019



448 American Law and Economics Review V20 N2 2018 (382–459)

to prove Proposition 3 of Lee and Klerman (2016), the limit value of the
plaintiff trial win rate will be that which was obtained under the assumption
that gY (x) is improper uniform and σ = 1. �

B. Model with the Chatterjee–Samuelson Mechanism

LEMMA B1. Any best response in the litigation game can be represented by

a non-decreasing function.

Proof of Lemma B1. This proof is modeled after the one used in Fried-
man and Wittman (2007). Let d(v) be an arbitrary defendant strategy.
Suppose that plaintiff strategy p(u) does not have the desired monotonicity
property. We will show that there is a better response, q(u), that is closer to
monotonic. If p(u) is not nondecreasing, then there are points u1 < u2 such
that p(u1) > p(u2). Define q(u) as follows: q (u1) = p(u2), q (u2) = p(u1),
and otherwise q (u) = p(u). Then the payoff sum at points u1 and u2 of q(u)

is �p(q (u1) , u1, d (v))+�p(q (u2) , u2, d (v)) = A + B1 + B2, where

A =
∫

{v | p(u2)�d(v)}

(
d(v)+ p(u2)

2

)
fV |U=u (v) dv

+
∫

{v | p(u1)�d(v)}

(
d(v)+ p(u1)

2

)
fV |U=u (v) dv,

B1 =
∫

{v | p(u2)>d(v)}

(
(θH − θL)�

(
u1 + v√

2

)
+ (θL − C)

)
fV |U=u (v) dv, and

B2 =
∫

{v | p(u1)>d(v)}

(
(θH − θL)�

(
u2 + v√

2

)
+ (θL − C)

)
fV |U=u (v) dv.

Likewise, the payoff sum for p(u) is �p (p(u1), u1, d(v)) + �p(p(u2), u2,
d(v)) = A + B′

1 + B′
2, where

B′
1 =

∫
{v | p(u1)>d(v)}

(
(θH − θL)�

(
u1 + v√

2

)
+ (θL − C)

)
fV |U=u (v) dv, and

B′
2 =

∫
{v | p(u2)>d(v)}

(
(θH − θL)�

(
u2 + v√

2

)
+ (θL − C)

)
fV |U=u (v) dv.
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Therefore,

[�p(q (u1) , u1, d(v))+�p(q(u2), u2, d(v))]

− [�p(p(u1), u1, d(v))+�p(p(u2), u2, d(v))]

= (B1 + B2)− (B′
1 + B′

2

) =
∫

{v | p(u2)�d(v)<p(u1)}
ϕ(u1, u2, v)fV |U=u (v) dv,

where ϕ (u1, u2, v) = (θH − θL)
[
�
(

u2+v√
2

)
−�

(
u1+v√

2

)]
is a strictly posi-

tive function. Thus, the difference is strictly positive if {v | p(u2) � d(v) <

p(u1)} is non-empty. If the set is empty, then there is no difference between
the expected payoff from q(u) and that from p(u) at any u, and the plaintiff
may as well be assumed to choose q(u) over p(u). The argument for the
defendant is similar. �

PROPOSITION 4. Symmetric Nash Equilibria under the Chatterjee–
Samuelson Bargaining Model. Under the Chatterjee–Samuelson bargain-

ing model with gY (x) = 1, the following is true.

(a) There exists a continuous family of symmetric Nash equilibria;
(b) the plaintiff trial win rate is θH +θL

2 for any symmetric NE; and

(c) a sufficient condition that ensures that extreme cases on both ends

will be more likely to settle is that both the plaintiff’s strategy

and the defendant’s strategy eventually coincide at a fixed value in

each direction (as yp and yd approach positive infinity and negative

infinity).

Proof of Proposition 4. Point (a) was shown in the main text. To estab-
lish (b), we begin by proving the existence of γ (σ ) ∈ R such that the
step function strategies discussed in the main text indeed constitute a NE.
Suppose such γ (σ ) existed. Then the plaintiff must be indifferent between
demanding θL or demanding θH when yp = −γ (σ ) and the defendant must
be indifferent between offering θL and offering θH when yd = γ (σ ). Define
π (x) ≡ Pr

(
yp < −x|yd = x

) = �
(

−√
2x
σ

)
= Pr

(
yd > x|yp = −x

)
.

Similarly, let ψ (x) ≡ Pr
(
Y � 0 | yd = x, yp � −x

) = 1 −
Pr
(
Y � 0 | yp = −x, yd < x

)
.35 Then, for a given σ > 0, the defendant

35. The probability that yd = γ (σ ) or yp = −γ (σ ) has measure zero.
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is indifferent at yd = γd (σ ) if and only if his expected payout from either
offer is the same. Thus,

π (γ (σ ))

(
θH + θL

2

)
+ (1 − π (γ (σ ))) (θH )

= π (γ (σ )) (θL)+ (1 − π (γ (σ ))) ((θH − θL) ψ (γ (σ ))+ θL + C) ,

which is equivalent to π (γ (σ )) = (θH −θL)(1−ψ(γ (σ )))−C

(θH −θL)
(

1
2 −ψ(γ (σ ))

)
−C

. Likewise, the

plaintiff indifference condition can be written as

π (γ (σ ))

(
θH + θL

2

)
+ (1 − π (γ (σ ))) (θL) = π (γ (σ )) (θH )

+ (1 − π (γ (σ ))) ((θH − θL) (1 − ψ (γ (σ )))+ θL − C),

which is also equivalent to π (γ (σ )) = (θH −θL)(1−ψ(γ (σ )))−C

(θH −θL)
(

1
2 −ψ(γ (σ ))

)
−C

. Thus, under

the set-up, the plaintiff indifference condition and the defendant indif-
ference condition coincide. In this case, we simply need to prove there
exists x ∈ R such that π (x) = (θH −θL)(1−ψ(x))−C

(θH −θL)
(

1
2 −ψ(x)

)
−C

. Note that as x goes

from negative infinity to positive infinity, π (x) = Pr
(
yp < −x|yd = x

)
decreases from 1 to 0. Note also that as x goes from negative infin-
ity ψ (x) = Pr

(
Y � 0 | yd = x, yp � −x

)
will go from lim

x→−∞ψ (x) to

lim
x→∞ψ (x) = 1. It is easy to show that Pr

(
Y � 0 | yd = x, yp � −x

)
is increasing in x. In addition, since Pr

(
Y � 0 | yd = x, yp � −x

)
>

Pr
(
Y � 0 | yd = x, yp = −x

) = 1
2 , this value is always greater than

1
2 . In turn, (θH −θL)(1−ψ(x))−C

(θH −θL)
(

1
2 −ψ(x)

)
−C

= 1 − 1
2 (θH −θL)

C+(θH −θL)
(
ψ(x)− 1

2

) increases from

1 − 1
2 (θH −θL)

C+(θH −θL)
(
ψ(−∞)− 1

2

) to C
1
2 (θH −θL)+C

. Thus, by the Intermediate Value

Theorem guarantees us that there will be at least one x ∈ R such that
π (x) = (θH −θL)(1−ψ(x))−C

(θH −θL)
(

1
2 −ψ(x)

)
−C

.

Next, we show that this is indeed a NE. We must also show that for
all values of yp below some threshold, the plaintiff cannot do better than
demanding θL, and for all values of yp above the threshold the plaintiff
cannot do better than demanding θH , and similarly for the defendant. By
symmetry, we need only show one party’s case. Notice first that, given the
plaintiff’s strategy, it is never optimal at any yd for the defendant to make
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an offer strictly below θL because this strategy is strictly dominated by
the offer of θL. For all cases that would have litigated had the defendant
offered θL, the outcome is the same; but for all cases that would have settled
had the defendant offered θL, the defendant will instead incur a minimum
expected payout of θL + C. Second, it is also never optimal at any yd for the
defendant to make a settlement offer that is strictly between θL and θH . This
is because the plaintiff is playing by the discontinuous two-step strategy of
playing either θL or θH himself. If the defendant were to make a settlement
offer strictly between θL and θH , he will end up (i) litigating all the cases
he would have litigated had he offered θL instead (that is, those cases in
which the plaintiff observes yp above the threshold) but (ii) will also be
settling all other cases (that is, those cases in which the plaintiff observes
yp below the threshold) at a higher settlement value than had he simply
offered θL. Therefore, he is better off offering θL than any intermediate
value. Third, it is never optimal for the defendant to make a settlement offer
strictly greater than θH , since that is dominated by an offer of θH . Thus,
given the plaintiff’s strategy, the defendant’s best response must be one that
offers either θL or θH for each yd . Furthermore, the indifference condition
at yd = γ (σ ) shows that for yd > γ (σ) the defendant will be better off
offering θH , and for yd<γ (σ), the defendant will be better off offering
θL. Therefore, the defendant’s specified strategy is the best response to the
plaintiff’s strategy, and likewise, the plaintiff’s specified strategy is the best
response to the defendant’s strategy. Finally, note that the same argument
goes through when we work with θL − ε and θH + ε where ε is sufficiently
small.

To show (c), note that the litigation condition set is defined as
Rσ (yp, yd) = {(yp, yd)|p(yp; σ) > d(yd ; σ)

}
. This means that once p(yp; σ)

and d(yd ; σ) achieve their maximum value (or minimum value), the inequal-
ity will never be satisfied beyond that point. This means there exists yd,1

such that beyond this value, no defendant will ever go to trial (since
he is offering the highest settlement amount any plaintiff is demanding).
Similarly, there exists yp,0 such that below this value, no plaintiff will
ever go to trial (since she is demanding the lowest settlement amount
any defendant is offering). For this reason, the litigation condition set is
bounded both above and to the left, and extreme cases are thus likely to
settle. �
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PROPOSITION 5. Asymmetric Nash Equilibria under the Chatterjee–
Samuelson Bargaining Model. Under the Chatterjee–Samuelson bargain-

ing model with gY (x) = 1, the following is true.

(a) There exists a continuous family of asymmetric Nash equilibria;
(b) the plaintiff trial win rate will be θL under the obstinate plaintiff

equilibrium; and

(c) the plaintiff trial win rate will be θH under the obstinate defendant

equilibrium.

Proof of Proposition 5. Point (a) was proved by our construction of
obstinate Nash equilibria. To show (b), note that under an obstinate plain-
tiff equilibrium, there will exist a y∗

d ∈ R such that disputes will go
to trial if and only if yd < y∗

d . In this case, the plaintiff trial win rate

(when gY (x) = 1) is (θH − θL)
( ∫∞

0 �σ (y)dy∫∞
−∞�σ (y)dy

)
+ θL, where �σ (y) =∫∫

Rσ (yp,yd)

ϕσ (y − yp)ϕσ (y − yd)dypdyd and Rσ
(
yp, yd

) = {(yp, yd
) |yd <

y∗
d}. Since Rσ

(
yp, yd

)
is bounded above by y∗

d but extends indefinitely for
negative yd and ypvalues, �σ (y) approaches 1 as y approaches negative
infinity and approaches 0 as y approaches positive infinity by Cheby-
shev’s inequality. By the argument used in Proposition 3 of Lee and
Klerman (2016),

∫∞
0 �σ (y) dy converges to a finite value. But in this case,∫∞

−∞�σ (y) dy will approach infinity. Thus, the plaintiff trial win rate will
be θL. To show (c), note that under an obstinate defendant equilibrium, there
will exist y∗

p ∈ R such that disputes will go to trial if and only if yp > y∗
p .

Rewriting the plaintiff trial win rate as θH − (θH − θL)

(∫ 0
−∞�σ (y)dy∫∞
−∞�σ (y)dy

)
, we

can apply the analogous reasoning to show that the trial win rate will be θH .�

PROPOSITION 6. Symmetric and Asymmetric Limit Equilibria under the
Chatterjee–Samuelson Bargaining Model. Suppose the distribution of dis-

putes is strictly positive, bounded above, and continuous. Then under the

Chatterjee–Samuelson bargaining mechanism, whether the litigants make

naïve inferences or sophisticated inferences, the following is true.

(a) There exists at least one class of symmetric limit equilibria, and for

all symmetric limit equilibria, the plaintiff trial win rate is θH +θL
2

as σapproaches zero; and
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(b) there exist classes of obstinate limit equilibria (which are asym-

metric in the limit), and the plaintiff trial win rate is θL for

obstinate plaintiff limit equilibria and θH for obstinate defendant

limit equilibria as σ approaches zero.

Proof of Proposition 6. The plaintiff trial win rate in (a) follows imme-
diately from looking at the litigation condition set. We need only show that
there exists a family of Nash equilibria which in the limit approaches the
one we constructed in Proposition 4. To do this, we make the following
change of variables: u = yp/σ , v = yd/σ . To see the first part of the result,
notice that the litigation condition set under the uv-coordinate is defined as
follows: R (u, v) = {(u, v) | lim

σ→0+ p(σu; σ) > lim
σ→0+ d(σv; σ)}. This region

will be symmetric around the line v = −u if and only if we can show
that whenever (u, v) ∈ R (u, v), we must also have (−v, −u) ∈ R (u, v).
The rest of the analysis follows from the proof of Proposition 4 since
we must have lim

σ→0+ p(σu; σ) > lim
σ→0+ d(σv; σ) if and only if we have

lim
σ→0+ p(−σv; σ) > lim

σ→0+ d(−σu; σ). Therefore, the region of integration

in the limit is symmetric. Importantly, under the Chatterjee–Samuelson bar-
gaining model, the litigation condition set in the limit is not determined by
the parties’ inferences, but only by the parties’strategies, which are assumed
to be symmetric in the limit. Therefore, regardless of whether the litigants’
inferences are naïve or sophisticated, we will have a symmetric region of
integration in the limit. Given this symmetry, the 50% result follows from
the arguments used in Lee and Klerman (2016), Proposition 3.

It now remains to show that there will always be at least one continu-
ous family of Nash equilibria for σ ∈ (0, σ̄ ) for some σ̄ > 0 such that
in the limit we obtain a symmetric limit equilibrium. Our strategy is to
show that there exists σ̄ > 0 such that for all σ ∈ (0, σ̄ ), there will gen-
erally36 exist a pair of continuous functions

(
γp(·), γd(·)

)
: R+ → R2 such

36. We say “generally” because the proof makes use of the Implicit Function
Theorem and thus will depend on a particular Jacobian not taking on the value of zero
at the particular equilibrium value. Because the particular Jacobian is not identically
zero, this will generally be the case, although it may be possible to construct an example
in which the Jacobian can take on the value of zero at the particular equilibrium point.
Calculation using Mathematica confirmed that the Jacobian is indeed nonzero for normal
distributions.
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that limσ→0+ γp (σ ) = γ = limσ→0+ γd (σ ) and for each σ ∈ (0, σ̄ ), the
following (p(u; σ), d(v; σ)) is a NE in the σ -game and its limit is a limit
equilibrium:

p(u; σ) =
{
θH + θL for u � −γp (σ )

0 for u < −γp (σ )
and

d(v; σ) =
{
θH + θL for v � γd (σ )

0 for v < γd (σ )
.

Proceeding as before, we can write the two indifference conditions as
follows:

Pr
(
u < −γp (σ ) |v = γd (σ )

)
= (θH − θL)

(
1 − Pr

(
Y � 0 | v = γd (σ ) , u � −γp (σ )

))− C

(θH − θL)
(

1
2 − Pr

(
Y � 0 | v = γd (σ ) , u � −γp (σ )

))− C

and

Pr
(
v � γd (σ ) |u = −γp (σ )

)
= (θH − θL)

(
1 − Pr

(
Y < 0 | u = −γp (σ ) , v < γd (σ )

))− C

(θH − θL)
(

1
2 − Pr

(
Y < 0 | u = −γp (σ ) , v < γd (σ )

))− C
.

We will call these two conditions Condition X1 and Condition X2, respec-
tively. At this point, our strategy to constructing this continuous family of
Nash equilibria is as follows. We first find out what the limit equilibrium
must be if such a continuous family exists. Then we show that the limit is
indeed a NE of the σ -game in the limit. Then we apply the Implicit Func-
tion Theorem to conclude that there must indeed be continuous families
in a small neighborhood around σ = 0 that satisfy the two indifference
conditions. Therefore, assume such a continuous family exists and take the
limits of Condition X1 and Condition X2 as σ goes to zero. Notice

lim
σ→0+ Pr

(
u < −γp (σ ) |v = γd (σ )

)
= lim

σ→0+

(∫∞
−∞ gY (σ z) ϕ (z − γd (σ ))�

(−γp (σ )− z
)

dz∫∞
−∞ gY (σ z) ϕ (z − γd (σ )) dz

)

=
∫ ∞

−∞
ϕ (z − γ )�(−γ − z)dz = Pr(u < −γ |v = γ ).
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Note that the integral specification here assumes that the parties are making
sophisticated inferences by taking the distribution of disputes into account.
To prove the result for naïve inferences, one can simply replace gY (σ z)with
1 and follow the rest of the proof. The second equality in the above equation
comes from Lebesgue’s Dominated Convergence Theorem. If we let gu ∈ R

be the upper bound for gY (x), then since |gY (σ z)ϕ(z −γd(σ ))�(−γd(σ )−
z)| � guϕ(z − γd(σ )) for all z, and the latter function will integrate to a
finite value (namely, gu) over all z. Thus, we can take the limit under the
integral and factor out gY (0), which is nonzero. Likewise, we can show that
lim
σ→0+ Pr(v � γd(σ )|u = −γp(σ )) = Pr(v � γ |u = −γ ). Thus, lim

σ→0+ Pr

(u < −γp(σ )|v = γd(σ ))= lim
σ→0+ Pr(v � γd(σ )|u = −γp(σ )). Similarly, in

the limit we will also have lim
σ→0+ Pr(Y � 0|v = γd(σ ), u � −γp(σ )) =

lim
σ→0+ Pr(Y < 0 | u = −γp(σ ), v < γd(σ )). This means that in the limit,

Condition X1 and Condition X2 will coincide. As before, the Intermedi-
ate Value Theorem guarantees us that there is a suitable γ > 0 such
that the two conditions are both satisfied in the limit. We further know
that this is a NE in the limit by Proposition 4. Now we show that there
exist a pair of continuous functions (γp(·), γd(·)) : R+ → R2 such that
limσ→0+ γp(σ ) = γ = limσ→0+ γd(σ ) and (p(yp; σ), d(yd ; σ)) is a NE for
each σ . We rewrite Conditions X1 and X2 as follows:

X1 (σ , x1, x2) =
(∫∞

−∞ g (σ z) ϕ (z − x2)�(−x1 − z)dz∫∞
−∞ g(σ z)ϕ(z − x2)dz

)(
θH + θL

2

)

+
(

1 −
(∫∞

−∞ g (σ z) ϕ (z − x2)�(−x1 − z)dz∫∞
−∞ g(σ z)ϕ(z − x2)dz

))

×
(
(θH + θL)− (θH − θL)

×
∫∞

0 g (σ z) ϕ (z − x2)�(x1 + z)dz∫∞
−∞ g (σ z) ϕ (z − x2)�(x1 + z)dz

+ θL + C

)
= 0

and

X2 (σ , x1, x2) =
(∫∞

−∞ g (σ z) ϕ (z + x1)�(x2 − z)dz∫∞
−∞ g(σ z)ϕ(z + x1)dz

)(
θH + θL

2

)

+
(

1 −
(∫∞

−∞ g (σ z) ϕ (z + x1)�(x2 − z)dz∫∞
−∞ g(σ z)ϕ(z + x1)dz

))

D
ow

nloaded from
 https://academ

ic.oup.com
/aler/article-abstract/20/2/382/5113390 by Serials Section N

orris M
edical Library user on 17 January 2019



456 American Law and Economics Review V20 N2 2018 (382–459)

×
(
(θH − θL)

(
1 −

∫∞
0 g (σ z) ϕ (z + x1)�(z − x2)dz∫∞
−∞ g (σ z) ϕ (z + x1)�(z − x2)dz

)

+ θL − C

)
= 0.

Then K(σ , x1, x2) = (X1(σ , x1, x2), X2(σ , x1, x2)) is a continuously differ-
entiable function from R3 to R2 such that K (0, γ , γ ) = (0, 0). Then by the
Implicit Function Theorem,37 as long as the Jacobian matrix is invertible
at σ = 0, there is a small neighborhood around σ = 038 for which we can
find a unique

(
γp (σ ) , γd (σ )

)
for each σ such that K

(
σ , γp (σ ) , γd (σ )

) =
(0, 0) and limσ→0+ γp (σ ) = γ = limσ→0+ γd (σ ). Thus, we need only
check that the Jacobian matrix is invertible at σ = 0. Looking at the
equation, we see that the determinant cannot be identically zero since(
∂X 1(0,x1,x2)

∂x1

) (
∂X 2(0,x1,x2)

∂x2

)

=
(
∂X 1(0,x1,x2)

∂x2

) (
∂X 2(0,x1,x2)

∂x1

)
. (The left-hand

side has terms involving mostly ϕ(x)s while the right-hand side has terms
involving�(x)s and ϕ′(x)s.) Calculation using Mathematica confirmed that
the Jacobian was indeed not zero when working with normal distributions.

To establish (b), we first show the existence of obstinate plain-
tiff/defendant limit equilibria. Note that P (Y � 0 | Yd = x) + C is con-
tinuous in σ . We therefore have a continuous family of Nash equilibria with
parameter σ . Furthermore, we can rewrite the condition as follows:

P (Z � 0 | V = v) =
∫∞

0 g(σ z)ϕ(z − v)dz∫∞
−∞ g(σ z)ϕ(z − v)dz

.

Then as σ goes to zero, P (Z � 0 | V = v) approaches
∫∞

0 ϕ(z − v)dz,
which can take on any value between 0 and 1 depending on v. Therefore, the
corresponding v that satisfies P (Z � 0 | V = v)+ C = s will be uniquely
determined, and this pair of strategies will be an equilibrium for the σ -game

in the limit. Since
∫∞

0 g(σ z)ϕ(z−v)dz∫∞
−∞ g(σ z)ϕ(z−v)dz

is continuous in σ and for each σ , there

will be a unique v∗(s; σ), this equilibrium will be a limit of a continuous
family of asymmetric Nash equilibria.

37. We thank Ken Alexander for suggesting the use of the Implicit Function
Theorem to complete this argument.

38. Although in this model, σ , as standard deviation, is necessarily positive, both
X1 (σ , x1, x2) and X2 (σ , x1, x2) , simply as mathematical functions in three variablesσ , x1,
and x2, are continuous in σ around σ = 0 and well-defined for σ < 0 as well.
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Finally, we show that the plaintiff trial win rate in the limit is θL for the
obstinate plaintiff limit equilibria and θH for the obstinate defendant limit
equilibria. Under the normalized coordinates, the plaintiff trial win rate can
be written as

(θH − θL)

( ∫∞
0 �σ (z) gY (σ z)dz∫∞
−∞�σ (z) gY (σ z)dz

)
+ θL,

where �σ (z) = ∫∫Rσ (u,v) ϕ1 (z − u) ϕ1 (z − v) dudv. For obstinate plaintiff
limit equilibria, Rσ (u, v) = {(u, v) |v < v∗ (s; σ). It suffices to show that∫∞

0 �σ (z)gY (σ z)dz∫∞
−∞�σ (z)gY (σ z)dz

approaches zero as σ goes to zero. We can rewrite this as

follows:∫∞
0 �σ (z) gY (σ z)dz∫∞
−∞�σ (z) gY (σ z)dz

=
∫∞

0 �σ (z) gY (σ z)dz∫ 0
−∞�σ (z) gY (σ z)dz + ∫∞

0 �σ (z) gY (σ z)dz

=
∫∞

0 �σ (z) gY (σ z)dz∫ 0
−∞ gY (σ z)dz − ∫ 0

−∞ (1 −�σ (z)) gY (σ z)dz + ∫∞
0 �σ (z) gY (σ z)dz

By the argument used in Propositions 3 and 4 of Lee and Klerman (2016),
it is easy to show that

∫∞
0 �σ (z) gY (σ z)dz approaches

∫∞
0 �0 (z) gY (0)dz,

as σ approaches zero, where �0 (z) = ∫∫
R0(u,v) ϕ1(z − u)ϕ1(z − v)dudv

and R0 (u, v) = {(u, v) |v < v∗ (s; 0)}. ∫∞
0 �0 (z) gY (0)dz is a finite value

since �0 (z) approaches 0 at the speed of z−2. (See Proposition 3, Lee and
Klerman (2016)).

Meanwhile,
∫ 0
−∞ gY (σ z)dz = 1

σ

∫ 0
−∞ gY (y)dy approaches an infinite

value, asσ approaches zero. Lastly,
∫ 0
−∞ (1 −�σ (z)) gY (σ z)dz approaches∫ 0

−∞ (1 −�0 (z)) gY (0)dz, which also is a finite value. Thus, the plaintiff
trial win rate approaches θL in the limit. Likewise, for obstinate defendant
limit equilibria, the plaintiff trial win rate will approach θH in the limit. �
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