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Abstract

This paper establishes the consistency and limit distribution of minimum

distance (MD) estimators for time series models with deterministic or stochas-

tic trends. We consider models that are linear in the variables, but involve

nonlinear restrictions across parameters. Two complications arise. First, the

unrestricted and restricted parameter space have to be rotated to separate fast

converging components of the MD estimator from slowly converging compo-

nents. Second, if the model includes stochastic trends it is desirable to use a

random matrix to weigh the discrepancy between the unrestricted and restricted

parameter estimates. In this case, the objective function of the MD estimator

has a stochastic limit. We provide regularity conditions for the non-linear re-

striction function that are easier to verify than the stochastic equicontinuity

conditions that typically arise from direct estimation of the restricted param-

eters. We derive the optimal weight matrix when the limit distribution of the

unrestricted estimator is mixed normal and propose a goodness-of-fit test based

on over-identifying restrictions. To illustrate the MD estimation we analyze a

permanent-income model based on a linear-quadratic dynamic programming

problem and a present-value model.
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1 Introduction

This paper considers the limit distribution of minimum distance (MD) estimators for

time series models that involve deterministic or stochastic trends. The models are

indexed by a q×1 vector of parameters a. At the pseudo-true value a0, the parameter

vector satisfies the nonlinear restriction a0 = g(b0), where b0 is a lower dimensional

p × 1 vector. Such a restriction can, for instance, stem from a optimization-based

economic model. We assume that an estimator âT for the unrestricted parameter

vector is available. Our main interest is to analyze the limit distribution of MD

estimators b̂T of b0 and to test whether the restriction a0 = g(b0) is satisfied.

In principle, the time series model could be re-parameterized in terms of the

parameter vector b, to estimate b0 directly. However, an attractive alternative is to

estimate the unrestricted parameter vector a0 first and then to minimize a measure

of discrepancy between âT and g(b). This procedure is known as minimum distance

(MD) estimation. The distance measure used in our paper is ‖WT (âT − g(b))‖,
where {WT } is a sequence of weight matrices and ‖ · ‖ denotes the Euclidean

norm. The properly standardized discrepancy between the unrestricted estimate âT

and the restriction function evaluated at the MD estimate g(b̂T ) provides a natural

goodness-of-fit measure for the restricted specification. We show that the regularity

conditions for consistency and weak convergence of the MD estimator can be stated

in terms of equicontinuity conditions for the derivatives of the restriction function

and provide useful sufficient conditions. Our conditions are easier to verify than the

stochastic equicontinuity conditions, e.g. Saikkonen (1995), that commonly arise in

non-stationary time series models if b is directly estimated.

In the context of linear regression models without trends, the asymptotic prop-

erties of MD estimators of nonlinear restricted parameters are well known, e.g.

Chamberlain (1984). The unrestricted estimator âT is
√

T -consistent and has a

multivariate normal limit distribution. If the restriction function is smooth, a first-

order Taylor expansion of g(b) immediately yields the limit distribution of the MD

estimator. The optimal weight matrix is the inverse of the covariance matrix of the
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unrestricted estimator âT .

Two complications arise in the presence of time trends. First, some linear com-

binations of âT will converge at a faster rate than
√

T . The limit theory of âT is

usually based on a rotation that separates the fast converging components from the

slow components. The analysis of the minimum distance estimator requires an ad-

ditional rotation of the restricted parameter vector b. We describe the appropriate

rotation and how to determine the order of consistency of the rotated MD estimator.

Second, if the model includes stochastic trends, the limit distribution of âT is

non-standard. In the examples studied in this paper the limit distribution of âT is

mixed normal with a random covariance matrix. Optimality considerations suggest

to use a sequence of weight matrices {WT } that converges in distribution to the

inverse of this random covariance matrix. In this case the objective function of

the MD estimator does not converge to a non-stochastic limit and the standard

consistency argument for extremum estimators, e.g. Amemiya (1985), cannot be

employed. Following the methods used in the empirical process literature, e.g. Kim

and Pollard (1990) and van der Waart and Wellner (1996), we present an argument

based on an almost-sure representation of the objective function.

The paper is organized as follows. Section 2 reviews the existing literature

and presents two examples to motivate the MD estimation problem. Nonlinear

restriction functions are derived from a permanent-income model that is based on

a linear-quadratic dynamic programming problem and a present-value model. The

two examples highlight the complications in MD estimation that are addressed in

this paper. A general definition of the MD estimator is provided in Section 3 and

some fundamental assumptions are stated. Section 4 establishes the consistency of

the MD estimator and Section 5 characterizes its limit distribution under various

assumptions on the rates of convergence of âT and the smoothness of g(b). In

Section 6 we consider the case in which the limit distribution of the unrestricted

parameter estimates âT is mixed normal. We define an optimality criterion for the

MD estimator and derive the optimal weight matrix. Moreover, a J-type test for the

hypothesis a0 = g(b0) is provided. Section 7 concludes and the appendix contains
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mathematical derivations and proofs.

The notation “≡” is used to signify distributional equivalence, “=⇒” denotes

convergence in distribution, “
p−→” denotes convergence in probability, “ a.s.−→” is

almost-sure convergence, and “⊗” is the Kronecker-product. We will use
∫

B

and
∫

BB′ to abbreviate integrals of vector Brownian motion B(r) sample paths
∫

B(r)dr and
∫

B(r)B(r)′dr, respectively.

2 Examples

Economic theory often implies nonlinear restrictions across parameters of econo-

metric models. Many structural economic models involve solutions to stochastic

dynamic programming problems, which arise from the intertemporal maximization

of, for instance, households’ utility, firms’ profits, or social welfare. We consider an

optimization problem with a quadratic objective function and linear state transi-

tion equations. The optimal decision rule generates non-linear restrictions across

the parameters that govern the joint evolution of state and control variables. In

macroeconomics, linear-quadratic programming problems are frequently used to ap-

proximate smooth non-linear model economies (see Ljungqvist and Sargent (2000)).

Example 1: A consumer chooses consumption {Ct}∞t=0 to maximize the expected

utility

−1
2
IE0

[ ∞∑

t=0

(
1

1 + r

)t

(Ct − ε1,t − α)2
]

(1)

subject to the constraints

It+1 = µ(1− φ) + φIt + ε2,t+1 (2)

Wt+1 = (1 + r)(Wt − Ct) + It+1 + ε3,t+1,

where Wt is wealth, It is a stochastic income process, and r is the real interest rate.

The exogenous shocks are collected in the vector εt = [ε1,t, ε2,t, ε3,t]′. We will assume

that εt ∼ iid(0, Σεε). The shock ε1,t can be interpreted as taste shock that shifts

the utility of time t consumption, and ε2,t is the innovation of the observed income
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process It. It is assumed that there exists a stochastic income component ε3,t that

is unobserved by the econometrician. In other words, we do not require measured

wealth, consumption, and income to satisfy the wealth accumulation constraint in

Equation (2) exactly.

Under the optimal consumption rule the law of motion for consumption, wealth,

and income is



Ct

∆Wt

I1,t


 =




r
1+r

µ
1+r

φr(2−φ)
(1+r−φ)(1+r)

0 0 φ(1−φ)
1+r−φ

0 µ1 φ







Wt−1

1

(I1,t−1 − µ1)


 (3)

+




r
1+r

r
1+r

r
1+r

0 1 1

0 1 0







ε1,t

ε2,t

ε3,t


 +




− r2

1+r 0 0

−r 0 0

0 0 0







ε1,t−1

ε2,t−1

ε3,t−1


 .

The first row of (3) corresponds to the decision rule for Ct as a function of the state

variables. We will explore the estimation of this system for a stationary (0 ≤ φ < 1)

and non-stationary income (φ = 1) process. While our version of the permanent-

income model is more stylized than specifications that are estimated in practice, it

can be solved analytically and allows us to illustrate the MD estimation problem.1

¤

2.1 Restricted Cointegration Relationships

Suppose φ = 1 and µ = 0 in Example 1. Define y1,t = Ct and y2,t = [Wt, It].

According to the permanent-income model all three variables are integrated of order

one (I(1)). In this case the system (3) has the form of a cointegration regression

model 
 y1,t

y2,t


 =


 A′

I2


 y2,t−1 + ut, (4)

where Ij denotes the j× j identity matrix and ut is a moving-average (MA) process

of εt and εt−1. Let a = vec(A) and b = r. The restriction imposed by the optimal
1Detailed calculations for Example 1 are available from the authors upon requests.



5

decision rule on the cointegration vector A is

g(b) =
[

b

1 + b
,

1
1 + b

]′
. (5)

The distribution theory for estimators of the unrestricted cointegration vector

A in Equation (4) is well developed. The estimators typically converge a rate T−1.

Both the maximum likelihood estimator of a0 (Phillips (1991)) and the fully modified

least squares estimator (Phillips and Hansen (1990)) have a mixed normal (MN)

distribution with random covariance matrix.2

Several results concerning the estimation of the restricted cointegration vector

have been published. Phillips (1991) developed a theory of optimal inference for

cointegration regressions based on the likelihood function for [y′1,t, y
′
2,t]

′. He derives

the limit distribution of b̂T for linear restriction functions. Moreover, Saikkonen

(1993) studied a general approach for the estimation of cointegration vectors with

linear restrictions.

Saikkonen (1995) extended the analysis of the maximum likelihood estimator

to the case in which the restriction function is nonlinear and twice differentiable.

He provided stochastic equicontinuity conditions to make the conventional Taylor

approximation approach valid. Unfortunately, it is in general difficult to verify these

conditions (Saikkonen, 1995, page 893). One advantage of the MD approach is that

it leads to conditions that only involve the (deterministic) restriction function g(b).

Phillips (1993) also investigated the MLE estimation of a cointegration model in

which nonlinear restrictions are imposed on the cointegration parameters.

Nagaraj and Fuller (1991) studied a univariate nonstationary autoregressive time

series regression model with restrictions across parameters that are estimated at

different rates. The restrictions are given by an implicit function. Nagaraj and

Fuller showed that the constrained nonlinear least squares estimator is consistent

and derived its limit distribution under a stochastic equicontinuity condition for the

restriction function.
2See also Park (1992), Saikkonen (1991), and Stock and Watson (1993).
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2.2 Restrictions between Short-run and Long-run Dynamics

Even if the income process is stationary (0 ≤ φ < 1, µ > 0) both consumption and

wealth are I(1) processes under the optimal consumption choice (see, for instance,

Hall (1978)). In this case the optimal decision rule creates restrictions between

parameters that are associated with long-run relationships and parameters that

control the short-run dynamics. Define y1,t = Ct, y2,t = [∆Wt, It]′, x1,t = Wt−1,

x2,t = [1, It−1]′, yt = [y1,t, y
′
2,t]

′, and xt = [x1,t, x
′
2,t]

′. The regressor x1,t is I(1),

whereas x2,t is stationary. The consumption model is nested in the following general

specification 
 y1,t

y2,t


 =


 A′11 A′21

0 A′22





 x1,t

x2,t


 +


 u1,t

u2,t


 , (6)

where ut is an MA(1) process. Define aij = vec(Aij). The unrestricted parameter

vector is a = [a′11, a
′
21, a

′
22]

′ and b = [r, µ, φ]′ is composed of the structural parame-

ters. The restriction function g(b) is

g(b) =
[

r

1 + r
,

µ

1 + r
− µφr(2− φ)

(1 + r)(1 + r − φ)
,

φr(2− φ)
(1 + r − φ)(1 + r)

,

−µφ(1− φ)
1 + r − φ

,
φ(1− φ)
1 + r − φ

, µ(1− φ), φ

]′
. (7)

Since the errors u1,t and u2,t are uncorrelated with the stationary regressors x2,t,

the system (6) can be estimated by quasi-maximum likelihood ignoring the MA(1)

structure of ut. The limit distribution of the estimator âT is of the form

DT R(âT − a0) =⇒ η1/2Z, (8)

where

DT =




T 0 0

0 T−1/2I2 0

0 0 T−1/2I4


 , R =




1 0 0

0 R∗ 0

0 0 I2 ⊗R∗


 , R∗ =


 1 µ

0 1


 ,

and Z ≡ N (0, I7). The matrix R rotates the unrestricted parameters and its inverse

removes the mean µ from the regressor It−1. The diagonal matrix DT contains the

rates of convergence of the rotated parameters. Assume that the partial sum pro-

cess of ∆Wt converges to a vector Brownian motion: T−1/2
∑[Tr]

t=1 ∆Wt =⇒ B(r) ≡
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BM(Ω). Ω is the long-run variance of ∆Wt defined as limT→∞ 1
T IE[(

∑T
t=1 ∆Wt)(

∑T
t=1 ∆Wt)′].

The random covariance matrix η is given by

η =




(Σ11.2 ⊗Q−1
11.2) −(Σ11.2 ⊗Q−1

11.2Q12Q
−1
22 ) 0

−(Σ11.2 ⊗Q−1
22 Q21Q

−1
11.2) (Σ11.2 ⊗Q−1

22.1) + (Σ12Σ−1
22 Σ21 ⊗Q−1

22 ) (Σ12 ⊗Q−1
22 )

0 (Σ21 ⊗Q−1
22 ) (Σ22 ⊗Q−1

22 )


 .

(9)

Let Σ be the long-run variance of ut. The Σ′ijs are the partitions of Σ that con-

form with the partition of ut. The various elements of η are defined as follows:

Σ11.2 = Σ11 − Σ12Σ−1
22 Σ21, Q11 =

∫ 1
0 B2, Q12 = [

∫ 1
0 B, 0], Q21 = Q′

12, Q22 =

IE[R−1′∗ x2,tx
′
2,tR

−1∗ ], Q11.2 = Q11 −Q12Q
−1
22 Q12, and Q22.1 = Q22 −Q21Q

−1
11 Q12.

Define the rotated unrestricted parameters ã = Ra and let ã = [ã1, ã2]′, where ã1

corresponds to the cointegration parameter a11. The permanent-income model has

the following features. First, the function g̃(b) = Rg(b) creates restrictions across ã1

and ã2, which are estimated at the rates T−1 and T−1/2, respectively. Second, the

fast parameter estimate ˆ̃a1,T is asymptotically correlated with the slow parameter

estimates ˆ̃a2,T due to the intercept µ/(1 + r) in the cointegration relationship of

Ct and Wt. Third, the rotated restriction function is block-diagonal. The vector b

can be expressed as b = [b1, b
′
2]
′ and the restriction function is of the form g̃(b) =

[g̃1(b1)′, g̃2(b1, b2)′]′.

There are many other economic models that generate restrictions between pa-

rameters that control short-run dynamics and long-run relationships. A well-known

example is the present-value model, which has been widely studied in the empirical

finance literature, for instance by Campbell and Shiller (1987).

Example 2: Let y1,t be a stock price and y2,t a dividend payment. A risk-neutral

investor is indifferent between the stock and a bond that guarantees to pay the

interest rate r if

y1,t =
1

1 + r
IEt[y1,t+1 + y2,t+1]. (10)

Campbell and Shiller essentially modelled the joint behavior of y1,t and y2,t as

 y1,t − a1y2,t−1

∆y2,t


 = (I2 −A′2L)−1εt, εt ∼ iid(0, Σεε), (11)
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where L denotes the lag operator. If the cointegration parameter a1 = 1/r then

the linear combination y1,t − 1
ry2,t is called the spread and reflects the difference

between the stock price and the present discounted value of future dividends under

the assumption that y2,t+j = y2,t for all j.

The model assumes that spread and dividend growth follow a stationary VAR(1)

process. In addition to a1 = 1/r Equation (10) imposes restrictions on the matrix

of short-run dynamics A2. Let a2 = vec(A2), a = [a1, a
′
2]
′ and define the parameter

vector b = [r, b1, b2]′. The restriction function for this model is

g(b) =
[
1
r
, b2, b3, 1 + r − b2, −b3 − 1 + r

r

]
. (12)

The unrestricted parameter vector a can be estimated, for instance, by maximum

likelihood. The ML estimator has the property that a1 is estimated at rate T−1 and

a2 at rate T−1/2. The restriction function is block-diagonal. However, unlike in

Example 1 the estimators â1,T and â2,T are asymptotically uncorrelated since there

is no intercept in the cointegration relationship between stock prices and dividends.

¤

After the first draft of this paper was written we learnt that Elliot (2000) ana-

lyzed an MD estimator for b in the context of a cointegration regression model (4).

He applied the MD estimator to the six variable cointegration model of King et al.

(1991) in which the cointegration coefficients have to satisfy linear exclusion restric-

tions. He does not provide examples of nonlinear restrictions across cointegration

parameters. While his asymptotic theory suffices to analyze the permanent-income

model with an I(1) income process, it is not general enough to be applied to the

important class of problems in which g(b) imposes restrictions across parameters

that are estimated at different rates, such as in the permanent-income model with

stationary income process and the present-value model. Thus, our paper provides a

much more complete theory of MD estimators for non-stationary time series models,

which encompasses Elliot’s results as a special case.
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3 Minimum Distance Estimation

This section provides a rigorous definition of the MD estimator and introduces

regularity conditions that are used throughout the paper. Let YT (ω) be a data

matrix of sample size T defined on the probability space (Ω,F , IP ). Moreover, let

{âT } be a sequence of estimators of a q-dimensional parameter vector a ∈ A ⊂
IRq. It is assumed that there exists a unique pseudo-true value a0 ∈ A which is

consistently estimated by {âT }, that is, âT
p−→ a0 under IP . Let b ∈ B ⊂ IRp be a

second parameter vector and g(·) be a mapping from B to A. We assume that p ≤ q

and {a ∈ A : a = g(b), b ∈ B} ⊂ A. Thus, g(b) can be interpreted as a restriction

on the parameter space A. We will make the following assumptions with respect to

g(b) and B.

Assumption 1 (Parameter Restriction (I))

(i) The parameter space B is compact.

(ii) The restriction function g(b) is continuous.

(iii) There is a unique b0 in the interior of B such that g(b0) = a0.

Suppose {WT } is a sequence of q × q weight matrices. Any vector b̂T that

minimizes the criterion function

QT (b) =
1
2
‖W̃T (âT − g(b))‖, (13)

will be called a minimum distance (MD) estimator of b. ‖ · ‖ denotes the Euclidean

norm in IRq. The estimator b̂T exists because QT (b) is continuous in b on the

compact set B by Assumption 1. Moreover, b̂T is measurable due to Lemma 2 of

Jennrich (1969). We will now impose conditions on the joint asymptotic behavior

of the unrestricted estimator α̂T and the weight matrix W̃T .3

3Our main interest is the limit distribution of the MD estimator. To establish its consistency, it

is not necessary to make such detailed assumptions about the limit distribution of âT .
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Assumption 2 (Unrestricted Parameter Estimation and Weight Matrix)

(i) W̃T and aT are defined on the same probability space.

(ii) There exists a non-stochastic and invertible matrix R and a non-stochastic

diagonal matrix DT whose elements tend to infinity as T −→∞ such that

 DT R(âT − a0)

vec(W̃T R−1D−1
T )


 =⇒


 α

vec(W )




where α is a q × 1 random vector and W a q × q random matrix that is non-

singular with probability 1.

Assumption 2 implies that the limit distribution of the unrestricted estimator

âT is equivalent to the distribution of the random variable α. The matrix R rotates

the unrestricted parameter space and separates directions in which convergence of

âT is fast from directions in which convergence is slow. The diagonal elements of

DT correspond to the convergence rates for these different directions. More weight

should be assigned to the rotated elements of âT that provide the most precise

measurements of the corresponding a0 elements. Therefore, it is assumed that the

weight matrix W̃T is designed to grow more rapidly along the directions in which

the convergence of âT to a0 is fast. For the remainder of the paper we define the

standardized weight matrix WT = W̃T R−1D−1
T . Assumption 2 allows the limit of

the sequence {WT } to be random.

4 Consistency

The minimum distance estimator is consistent provided that the unrestricted es-

timator âT is consistent and b0 is uniquely identifiable based on the restriction

b0 = g(a0). The result is formally stated in the following theorem and proved in the

Appendix.

Theorem 1 (Consistency of MD Estimator)

If Assumptions 1 and 2 are satisfied, then b̂T
p−→ b0 as T −→∞.



11

The traditional proof of the consistency of extremum estimators is based on the

uniform convergence of the random sample objective function to a non-random limit

function coupled with some identification condition for the “true” parameter values,

e.g. Amemiya (1985). However, this traditional method is not applicable to our MD

estimator for two reasons. First, since the weight matrix converges in distribution

to a random matrix, the objective function QT (b) converges for each value of b to

a random variable. Second, in time series models with trends, the convergence rate

of QT (b) will generally depend on b.

The key idea to overcome the first difficulty is to work with an almost-sure

representation of the probability distributions of âT and W̃T . This idea has been

used in the empirical process literature to establish limit distributions for extremum

estimators. Kim and Pollard (1990), for instance, employ Dudley’s almost-sure

representation. We are using the Skorohod representation in this paper, see for

instance Billingsley (1986). To cope with the different convergence rates, Lemma 1

of Wu (1981) is employed (see Appendix).

5 Limit Distribution

Without loss of generality it is assumed that the diagonal elements of the matrix

DT are equal to T νj , j = 1, . . . , q, where νj ≥ νj+1 > 0. This section will develop

the limit distribution of b̂T under various assumptions on the restriction function

g(b). Define αT = DT R(âT − a0) and WT = W̃T R−1D−1
T . The objective function of

the MD estimator can be rewritten as

QT (b) = QT (b0)− α′T W ′
T WT DT R(g(b)− a0)

+
1
2
(g(b)− a0)′R′D′

T W ′
T WT DT R(g(b)− a0) (14)

We will begin with a linear restriction function and then consider Taylor approx-

imations to non-linear restriction functions subsequently. Throughout this section

we will state additional assumptions on the restriction function g(b) and the domain

B of b. We use g(1)(b∗) to denote the q × p matrix ∂g
∂b′ |b=b∗ of first derivatives.
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5.1 Linear Restriction Functions

Suppose that g(b) = Gb, where G is a q × p matrix. In this case the objective

function is quadratic in b. Thus, QT (b) = Qq,T (b), where

Qq,T (b) = Qq,T (b0)− α′T W ′
T WT DT RG(b− b0)

+
1
2
(b− b0)′G′R′D′

T W ′
T WT DT RG(b− b0). (15)

To analyze the limit distribution of the MD estimator, the restricted parameter

space has to be rotated. Define g̃(b) = Rg(b), G̃ = RG, and the p × p matrix

G∗ consisting of the first p linearly independent rows of G̃. Moreover define the

function ι(j) such that the j’th row of G∗ equals to the ι(j)’s row of G̃. Decompose

G∗ = L∗U∗, where L∗ is lower triangular and U∗ is upper triangular. Let

ΛT = diag[T νι(1) , . . . , T νι(p) ]U∗, and ΓT = DT G̃Λ−1
T ,

where T νι(j) is the convergence rate that corresponds to the j’th row of G∗. Define

the local parameter vector s = ΛT (b − b0) with domain S = ΛT (B − b0). The

role upper triangle matrix U∗ in ΛT is to rotate the restricted parameter b. The

diagonal matrix diag[T νι(1) , . . . , T νι(p) ] in ΛT controls the convergence rates of the

rotated parameter. The sample objective function of the MD estimator in terms of

s is

Qq,T (b0 + Λ−1
T s) = Qq,T (b0)− α′T W ′

T WT ΓT s +
1
2
s′Γ′T W ′

T WT ΓT s. (16)

Example 3: Let R = I. Thus, G̃ = G. Aij denotes element ij of a matrix

A. Ai. and A.j denote its i’th row and j’th column, respectively. Suppose DT =

diag[T 3/2, T, T, T 1/2, T 1/2] and G3. = λ1G1. + λ2G2. for some scalars λ1, λ2. In this

case G∗ = [G′
1., G

′
2., G

′
4.]
′. The function ι(j) takes the values ι(1) = 1, ι(2) = 2,

ι(3) = 4. Therefore, νι(1) = 3/2, νι(2) = 1, νι(3) = 1/2. Since L∗ and U∗ are defined

through and LU-decomposition of G∗, it follows that G∗
i.[U

−1∗ ].j = 0 for j > i. Since

G3. is a linear combination of G∗
1. and G∗

2. we can deduce

G3.[U−1
∗ ].3 = λ1G

∗
1.[U

−1
∗ ].3 + λ2G

∗
2.[U

−1
∗ ].3 = 0
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Therefore,

ΓT =




G∗
1.[U

−1∗ ].1T 3/2−3/2 0 0

G∗
2.[U

−1∗ ].1T 1−3/2 G∗
2.[U

−1∗ ].2T 1−1 0

G∗
3.[U

−1∗ ].1T 1−3/2 G∗
3.[U

−1∗ ].2T 1−1 0

G∗
4.[U

−1∗ ].1T 1/2−3/2 G∗
4.[U

−1∗ ].2T 1/2−1 G∗
4.[U

−1∗ ].3T 1/2−1/2

G∗
5.[U

−1∗ ].1T 1/2−3/2 G∗
5.[U

−1∗ ].2T 1/2−1 G∗
5.[U

−1∗ ].3T 1/2−1/2




−→




G∗
1.[U

−1∗ ].1 0 0

0 G∗
2.[U

−1∗ ].2 0

0 G∗
3.[U

−1∗ ].2 0

0 0 G∗
4.[U

−1∗ ].3

0 0 G∗
5.[U

−1∗ ].3




¤

The asymptotic behavior of ΓT is summarized in the following Lemma.

Lemma 1 Suppose that g(b) = Gb. limT→∞ ΓT = Γ, where Γ has full row rank.

Since it is assumed that the “true” parameter is in the interior of B, the param-

eter space S of the local parameter s expands to IRp as T −→∞. Define

ŝq,T = (Γ′T W
′
T WT ΓT )−1Γ′T W

′
T WT αT (17)

as the minimizer of the quadratic sample objective function Qq,T (b0 + Λ−1
T s) over

IRp.

Theorem 2 Suppose Assumptions 1 and 2 are satisfied and the restriction is of

the form g(b) = Gb. Then ŝq,T =⇒ (Γ′W ′WΓ)−1Γ′W ′Wα and ΛT (b̂T − b0) =

ŝq,T + op(1).

Lemma 1 can be used to derive the limit distribution of ŝq,T . The op(1) term

arises because for small sample sizes the objective function might attain its minimum

on the boundary of the parameter space and not satisfy the first-order conditions.
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Remark: If the convergence rates in ΛT are different and ΛT is not a diagonal

matrix, the convergence rate of the unrotated restricted parameter estimator is de-

termined by a slower convergence rate and its limit may have a degenerated asymp-

totic covariance matrix. For example, suppose p = 2 and ΛT = diag
(
T,
√

T
)

U∗. If

U∗12 6= 0, we deduce from Theorem 2 that


√

T
(
b̂1,T − b1,0

)

√
T

(
b̂2,T − b2,0

)

 =


 − U∗12

U∗11U∗22 ŝ2,qT

1
U∗22 ŝ2,qT


 + op(1).

However, if U∗12 = 0, then

 T

(
b̂1,T − b1,0

)

√
T

(
b̂2,T − b2,0

)

 =




1
U∗11 ŝ1,qT

1
U∗22 ŝ2,qT


 + op(1)

and the limit distribution of the unrotated parameter vector is non-degenerated. ¤

5.2 Block-triangular Restriction Matrices

The restriction functions in the examples of Section 2 are block-triangular. In this

subsection we study the linear case. Suppose that R = I and the unrestricted

parameter vector a can be partitioned as follows: a = [a′1, a
′
2]
′. The subvector a1

consists of long-run parameters that can be estimated at a fast rate, say ν1 = 1.

Assume that a2 consists of short-run parameters that are estimated at a slower rate

T ν2 , e.g. ν2 = 1/2. We refer to the restrictions as block-triangular if the matrix G

and the restricted parameter b can be partitioned as follows:

 a1

a2


 =


 G11 0

G21 G22





 b1

b2


 ,

where G11 and G22 have full row rank. The bi’s are pi × 1 subvectors of b. The

setup implies that the subvector b2 does not restrict the long-run parameters a1.

The rank condition guarantees, that it is possible to solve for b1 based on a1, and

for b2 based on a2 conditional on a1. This case is also discussed in Phillips (1991,

Remark (m)). Before examining the consequences of the block-triangular structure

we provide a general definition.
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Definition 1 (Block-triangular Restrictions) Let ã = Ra. Partition the rotated un-

restricted parameter vector ã = [ã′1, . . . , ã
′
L]′ such that the estimators of the elements

of ãl converge all at the same rate T νl, l = 1, . . . , L. Let g̃l(b) be the rotated re-

striction function corresponding to ãl and Glk be the submatrix of G that conforms

with the partitions of ã and b. The restriction function is block-triangular if it is

possible to rearrange the elements of b such that the restricted parameter vector can

be partitioned into k = 1, . . . , K ≤ L subvectors bk and (i) g̃l(b) = fl([b′1, . . . , b
′
l]
′),

l = 1, . . . , K, and (ii) Gll has full row rank, l = 1, . . . , K.

Due to the block-triangular structure, the matrices G∗ and U∗, defined above,

are of the form

G∗ =


 G∗

11 0

G∗
21 G∗

22


 , U∗ =


 U∗

11 0

0 U∗
22


 ,

where G∗
11 consists of the first p1 linearly independent rows of G11 and U∗ corre-

sponds to the upper-triangular matrix of the LU-decomposition of G∗. The matrix

ΓT converges to

ΓT =


 T ν1G11 0

T ν2G21 T ν2G22





 T−ν1U∗−1

11 0

0 T−ν2U∗−1
22


 −→


 Γ11 0

0 Γ22


 ,

where Γii = GiiU
∗−1
ii . Define the selection matrices M ′

1 = [Ip1 , 0p1×p2 ], and M ′
2 =

[0p2×p1 , Ip2 ]. The limit distribution of the subvectors b̂i,T is given by

T νi(b̂i,T − bi) =⇒ U∗−1
ii M ′

i(Γ
′W ′WΓ)−1Γ′W ′Wα, i = 1, 2. (18)

Thus, the parameters b1 that enter the long-run parameters a1 can be estimated at

the fast rate T ν1 , whereas b2 is estimated at the slower rate T ν2 . In general, the

limit distribution for both subvectors depends on the entire vector α. Thus, even the

restrictions embodied in the short-run parameters a2 are informative with respect

to b1.

If the limit weight matrix W is with probability one of the form

W =


 W11 0

0 W22


 ,
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where the partitions of W correspond to the partitions of a, then the limit distribu-

tion simplifies considerably

T νi(b̂i,T − bi) =⇒ (G′
iiW

′
iiWiiGii)−1GiiW

′
iiWiiαi, i = 1, 2. (19)

The simplification arises because the system is now block-diagonal and U∗
iiΓii = Gii.

Thus, if the weight matrix cross-terms between short-run and long-run parameters

are zero, the distribution of the long-run parameter estimates â1,T does not affect

the limit of b̂2,T , and vice versa, the limit distribution of b̂1,T is solely determined

through the distribution of α̂1,T . Now consider the following two step estimator b̃T

of the restricted parameter vector b.

Two-step Estimation Procedure:

(i) Estimate b1 according to

b̃1,T = argminb1∈B1

1
2
‖W̃11,T (â1,T −G11b1)‖,

where T−ν1W̃11,T =⇒ W11.

(ii) Estimate b2 according to

b̃2,T = argminb2∈B2

1
2
‖W̃22,T (â1,T −G21b̂1,T −G22b2)‖,

where T−ν2W̃22,T =⇒ W22. ¤

In the second step, b1 is replaced by its first-step estimate. Conventional argu-

ments imply that the estimation uncertainty of b̂1,T does not affect the limit distribu-

tion of b̂2,T because b̂1,T is estimated at a faster rate. Thus, the limit distribution of

the two-step estimator is equivalent to the limit of the minimum distance estimator

with block-diagonal weight matrix, given in Equation (19). The arguments provided

in this subsection easily extend to the case of more than two different convergence

rates (L > 2).

5.3 Nonlinear Restriction Functions

To derive the limit distribution of the MD estimator for nonlinear restriction func-

tions we will impose smoothness conditions and use a Taylor series approximation
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of the form

g(b) = g(b0) + G(b− b0) + Φ[b+, b0](b− b0), (20)

where G = g(1)(b0), Φ[b+, b0] = g(1)(b+)− g(1)(b0), and b+ is located between b0 and

b. Define G̃, G∗, L∗, U∗, ΛT , and ΓT as in Section 5.1. The term DT R(g(b)−a0) that

appears in the objective function of the MD estimator (Equation 14) is approximated

by

DT R(g(b)− a0) = ΓT s + DT RΦ[b+, b0]Λ−1
T s, (21)

where s is the local parameter s = ΛT (b − b0). In order to be able to bound the

remainder term Φ[·, ·], we impose some smoothness conditions on g(b).

Assumption 3 (Parameter Restriction (II))

(i) The parameter restriction function g(b) is differentiable in a neighborhood

of b0.

(ii) For any sequence δT → 0, sup‖b1−b0‖≤δT
‖DT RΦ[b1, b0]Λ−1

T ‖ = o(1).

Assumption 3(ii) is an equicontinuity condition for the first derivative of the

restriction function that allows us to use the conventional quadratic approximation

of the objective function. An advantage of the MD approach is that one only has to

verify a deterministic condition. Maximum likelihood estimators, such as the one

discussed by Saikkonen (1995) for the restricted cointegrated regression model, and

the constrained least squares estimator proposed by Nagaraj and Fuller (1991, see

Assumption 4) require the verification of stochastic equicontinuity conditions.

The following assumption provides a sufficient condition for Assumption 3. A

proof can be found in the Appendix.

Assumption 3* (Parameter Restriction (Sufficient Condition)) Suppose that ∂g(b)
∂b

is continuous in a neighborhood of the true parameter b0. Moreover, at least one of

the following conditions is satisfied:

(i) For each pair i, j such that νi > νι(j), there exists an ε > 0 such that the

ij’th element of the matrix RΦ[b1, b0]U−1∗ is equal to zero for ‖b1 − b0‖ < ε.
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(ii) For each i such that νi > νι(p) the i’th component g̃i(b) =
∑q

j=1 Rijgj(b) of

the rotated restriction function is linear in b.

(iii) The rotated restriction function Rg(b) is block-triangular, as in Defini-

tion 1.

Remark: Conditions (ii) and (iii) are special cases of condition (i), that are easy to

verify and cover many economic models. For instance, both the restrictions imposed

by the permanent-income model (stationary income process) and the present-value

model have a block-triangular structure and satisfy Assumption 3*(iii). Moreover,

from Equations (7) and (12) it is easy to see that the first derivative of g(b) is

continuous on B if B is compact. ¤

The limit distribution of the MD estimator is obtained by showing that the

sample objective function QT (b0 + Λ−1
T s) can be approximated by the quadratic

function Qq,T (b0 + Λ−1
T s) given in Equation (16).4 Assumption 3 guarantees that

the contributions of the remainder term from the Taylor series approximation are

asymptotically negligible. The following Theorem characterizes the large sample

behavior of b̂T .

Theorem 3 Suppose that Assumptions 1 to 3 are satisfied. Then (i) ‖ΛT (b̂T −
b0)‖ = Op(1), and (ii) ΛT (b̂T − b0) = ŝq,T + op(1).

The first part characterizes the order of consistency. The second part states that

the limit distribution of the nonlinear MD estimator b̂T is equivalent to the distri-

bution of the local estimator ŝq,T , which minimizes the quadratic approximation of

the sample objective function QT (b0 +Λ−1
T s). The limit distribution of ŝq,T is given

in Theorem 2.
4An advantage of deriving limit distributions of extremum estimators through quadratic approx-

imations of sample objective functions is that the derivation can be extended to the case in which

b0 is on the boundary of B. Based on the very general results in Andrews (1999) this extension is

straightforward. However, the boundary case is not pursued in this paper.
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6 Mixed Normality of the Unrestricted Estimator

The limit distribution of the MD estimator generally depends on the choice of the

sequence of weight matrices {W̃T }. If the asymptotic distribution of the unrestricted

estimator âT is mixed normal, it is possible to develop an optimality theory for the

MD estimation. Moreover, we can construct a test for the null hypothesis that

a0 = g(b0) for a b0 ∈ B. The mixed normal case is of great practical importance. It

arises, for instance, in the examples considered in Section 2. Park and Phillips (2000)

showed that the maximum likelihood estimator of the regression coefficients in a

non-stationary binary choice model also has a mixed-normal limit distribution.

6.1 Optimal Weight Matrix

Consider the following class M of minimum distance estimators:

M: b̂T , âT , and W̃T satisfy Assumption 2, α ≡ η1/2Z, where η is a q× q

random matrix that is positive definite with probability one and Z is a

q × 1 standard normal random vector that is independent of η and W .

A common criterion for asymptotic efficiency of an estimator is the concentration

of the limit distribution, e.g., Basawa and Scott (1983). This criterion does not

require the competing estimates to be asymptotically normal and has been widely

used in the non-stationary time series literature, such as Saikkonen (1991), Phillips

(1991), and Jeganathan (1995).

Definition 2 (Efficiency) Let b̂T and b∗T be two estimator for b0 belonging to class

M. b∗T is asymptotically more efficient than b̂ if

lim
T→∞

IP{ΛT (b̂T − b0) ∈ C} ≤ lim
T→∞

IP{ΛT (b∗T − b0) ∈ C}

for any convex set C ⊂ Rp, symmetric about the origin. If the inequality holds for

all b̂T ∈M, then b∗T is asymptotically efficient within the class M.
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We obtain the following result with respect to the optimal choice of weight

matrix.

Theorem 4 (Optimal weight) Suppose that the limit distribution α of the unre-

stricted estimator âT is mixed normal MN (0, η). Then, an optimal sequence of

weight matrices {W̃ o
T } is a sequence of random matrices such that


 D−1′

T R−1′W̃ o′
T W̃ o

T R−1D−1
T

DT R (âT − a0)


 ⇒


 η−1

α


 , (22)

where η is the random variance in the mixed normal distribution.

If the b0 is in the interior of the parameter space, Theorems 2 and 3 imply that

the limit distribution of the MD estimator is mixed normal of the form

ΛT (b̂T − b) =⇒MN
(

0, (Γ′η−1Γ)−1

)
.

Now reconsider the special case discussed in Section 5.1. We argued that the two-

step estimation b̃1,T and b̃2,T can be interpreted as a minimum-distance estimator

with block-diagonal weight matrix. Let ηij denote the partitions of η that correspond

to the partitions of the unrestricted parameter vector a. To implement the two-

step estimation procedure it is reasonable to choose the weight matrices such that

T−2νiW̃ ′
ii,T W̃ii,T =⇒ η−1

ii . This yields the following limit distribution

T νi(b̃i,T − bi) =⇒MN
(

0, (G′
iiη

−1
ii Gii)−1

)
.

However, Theorem 4 implies that the two-step estimator b̃T is dominated by minimum-

distance estimators for which D−1′
T R−1′W̃ o′

T W̃ o
T R−1D−1

T converges to η−1. Thus,

whenever η is not block-diagonal, it is inefficient to disregard the information in the

short-run parameter estimates â2,T about the parameters b1. It is also inefficient to

estimate b2 by treating b1 as known.

Remark: The restriction function for the present-value model in Section 2 is block-

diagonal and the asymptotic covariance matrix of the unrestricted parameter esti-

mates turns out to be block-diagonal. Hence, the two-step MD estimator is asymp-

totically efficient in Example 2. In the permanent-income model (Example 1) the
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asymptotic covariance matrix of the rotated parameter estimates, however, is not

block-diagonal (see Equation (9)) and the two-step procedure is inefficient. ¤

6.2 Testing the Validity of the Restriction

To test the validity of the imposed restrictions we consider the following J-test

statistic

JT = [âT − g(b̂T )]′W̃ ′
T W̃T [âT − g(b̂T )].

Under the assumption that b0 is in the interior of B and âT has a mixed normal

limit distribution, we obtain the following result.

Theorem 5 Suppose that Assumptions 1 to 3 are satisfied. Assume that the nor-

malized unrestricted estimator DT R(âT − a) =⇒MN (0, η).

(i) Then,

JT =⇒
q−p∑

i=1

diχ
2
1(i),

where χ2
1(i) denote iid χ2 random variables with one degree of freedom, that

are independent of di. The di’s are non-zero random variables that correspond

to the eigenvalues of

η′1/2W ′
(
Iq −WΓ

(
Γ′W ′WΓ

)−1 Γ′W ′
)

Wη1/2.

(ii) Under a sequence of optimal weight matrices {W̃ o
T } (defined in Theorem 4)

JT =⇒ χ2
q−p,

where χ2
p−q is a χ2 random variable with q − p degrees of freedom.

7 Conclusions

In this paper we studied the asymptotic properties of the MD estimator in non-

stationary time series models that are linear in the variables but involve nonlinear
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parameter restrictions. We analyze two applications of the proposed MD estima-

tor: a permanent-income model based on a linear-quadratic dynamic programming

problem and a present-value model.

To construct optimal MD estimators we allow the criterion function of the es-

timator to depend on a sequence of weight matrices that converges to a stochastic

limit. We showed the consistency of the estimator using a Skorohod representation

of the weakly converging objective function and derived the limit distribution of the

MD estimator for smooth restriction functions. Our analysis relies on an equicon-

tinuity condition for the parameter restriction function that allows a conventional

first-order Taylor series approximation. If the equicontinuity condition is violated

and some of the remainder terms are being amplified through convergence rate dif-

ferentials of the unrestricted estimators, higher order expansions of the restriction

function may become necessary. However, the results will be very model specific

and difficult to generalize.
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Appendix: Proofs

Lemma 2 (Lemma 1 in Wu (1981))

Suppose that for any δ > 0

lim infT→∞ inf
‖b−b0‖≥δ

(QT (b)−QT (b0)) > 0 a.s. (or in prob.).

Then, b̂T −→ b0 a.s. (or in prob. ) as T −→∞.

Proof of Theorem 1

Define αT = DT R(âT − a0) and WT = W̃T R−1D−1
T . By Assumption 2

[α′T , vec(WT )′]′ =⇒ [α′, vec(W )′]′.

Using the Skorohod construction, e.g. Billingsley (1986), one can find a probability

space (Ω∗,F∗, IP ∗) with random variables α∗, α∗T ,W ∗, W ∗
T that are distributionally

equivalent to α, αT ,W,WT , respectively, and [α∗′T , vec(W ∗
T )′] a.s.−→ [α∗′ , vec(W ∗)′] in

[IP ∗].

Define qT (b) = DT R(g(b)−a0). From the uniqueness assumption that a0 = g(b)

only if b = b0, it follows that qT (b) = 0 if and only if b = b0. Furthermore, under

Assumptions 1 and 2, we have

inf
‖b−b0‖≥δ

‖qT (b)‖2 ≥ λmin (DT ) λmin

(
R′R

)
inf

‖b−b0‖≥δ
‖qT (b)‖2 →∞, (23)

where λmin (A) denotes the minimum eigenvalue of matrix A.

The objective function can be rewritten as

QT (b) =
1
2
α′T W ′

T WT αT − qT (b)′W ′
T WT αT +

1
2
qT (b)′W ′

T WT qT (b).

Moreover, we define

Q∗
T (b) =

1
2
α∗

′
T W ∗′

T W ∗
T α∗T − q′T W ∗′

T W ∗
T α∗T +

1
2
q′T W ∗′

T W ∗
T qT (b),

which is distributionally equivalent to QT (b). Let b̂∗T be the MD estimator based on

the objective function Q∗
T (b). We will use Lemma 2 to show that b̂∗T

a.s.−→ b0. Since

b̂∗T ≡ b̂T on the original probability space, it can be deduced that b̂T
p−→ b0.
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We show that the sufficient condition in Lemma 2 is satisfied. For a given δ > 0

lim inf T→∞ inf
‖b−b0‖≥δ

(Q∗
T (b)−Q∗

T (b0))

= lim infT→∞ inf
‖b−b0‖≥δ

{
qT (b)′W ∗′

T W ∗
T qT (b)

[
1
2
− qT (b)′W ∗′

T W ∗
T α∗T

qT (b)′W ∗′
T W ∗

T qT (b)

]}

≥ lim infT→∞

(
inf

‖b−b0‖≥δ
‖W ∗

T qT (b)‖2

)(
1
2
− sup
‖b−b0‖≥δ

|qT (b)′W ∗′
T W ∗

T α∗T |
‖W ∗

T qT (b)‖2

)
.

The equality and the inequality hold because W ∗
T converges almost surely to a non-

singular matrix by Assumption 2 and in consequence, together with (23) we have

lim infT→∞

(
inf

‖b−b0‖≥δ
‖W ∗

T qT (b)‖2

)
> 0.

The Cauchy-Schwarz inequality implies that

sup
‖b−b0‖≥δ

|qT (b)′W ∗′
T W ∗

T α∗T |
‖W ∗

T qT (b)‖2
≤ ‖W ∗

T α∗T ‖
inf‖b−b0‖≥δ ‖W ∗

T qT (b)‖ −→ 0

almost surely, because ‖W ∗
T α∗T ‖ −→ ‖Wα‖ and ‖W ∗

T qT (b)‖ −→ ∞ almost surely for

‖b− b0‖ > δ as in (23). Thus, it can be deduced that

lim infT→∞ inf
‖b−b0‖≥δ

(Q∗
T (b)−Q∗

T (b0)) > 0. ¤

Proof of Lemma 1

ΓT = DT RGΛ−1
T . Let ΓT,ij and Γij denote the elements ij of the matrices ΓT and

Γ, respectively. Suppose the first p rows of G̃ are linearly independent such that

ν(j) = νj . Then ΓT,ij = T νi−νjΓij . If i ≥ j then νi ≤ νj and T νi−νj is O(1). If

j > i, then Γij = 0 because G∗U−1∗ is lower triangular. Moreover, ΓT,ii = Γii 6= 0

because the diagonal elements of L∗ are non-zero since G∗ has full rank. Therefore,

Γ has full row rank. The argument can be easily extended to the case in which

there is linear dependence among the first p rows of G̃, by noting that ν(j) ≤ νj and

Gi.[U−1∗ ].j = 0 for i < ι(j). ¤

Proof of Sufficiency of Assumption 3*

Part (i): Since ∂g(b)/∂b is continuous and the parameter space B is compact, we

can deduce that ∂g(b)/∂b is uniformly continuous around b0. Suppose νi ≤ νι(j).



27

Then

sup
‖b1−b0‖≤δT

∣∣∣∣[DT RΦ[b1, b0]Λ−1
T ](ij)

∣∣∣∣ = T νi−νι(j) sup
‖b1−b0‖≤δT

∣∣∣∣[DT RΦ[b1, b0]U−1
∗ ](ij)

∣∣∣∣ −→ 0

because T νi−νι(j) is O(1) and ∂g(b)/∂b′ is uniformly continuous around b0.

If νi > νι(j),

sup
‖b1−b0‖≤δT

∣∣∣∣[DT RΦ[b1, b0]Λ−1
T ](ij)

∣∣∣∣ = T νi−νι(j) [DT RΦ[b1, b0]U−1
∗ ](ij) = 0

by Assumption 3(ii).

To prove (ii) and (iii) we will verify that condition (i) is satisfied.

Part (ii): Define Φ̃[b1, b0] = RΦ[b1, b0]. Now consider
[
DT Φ̃[b1, b0]Λ−1

T

]

ij

= T νi−νι(j)

(
p∑

l=1

Φ̃il[b1, b0][U−1
∗ ]lj

)
.

For νi > νι(j), [DT Φ̃[b1, b0]Λ−1
T ]ij = 0 because of the linearity assumption of g̃i (b) in

b so that Φ̃ij [b1, b0] = 0 for j = 1, . . . , p.

Part (iii): Let Φ̃lk[b1, b0] and [U−1∗ ]lk denote the submatrices of Φ̃[b1, b0] and U−1∗ that

conform with the partitions of ã and b in Definition 1. Due to the block-triangular

structure, Φ̃[b1, b0] = 0 for k > l. Moreover, [U−1∗ ]lk = 0 for l 6= k. Thus,
[
DT Φ̃[b1, b0]Λ−1

T

]

lk

= T νl−νk

K∑

j=1

Φ̃lj [b1, b0][U−1
∗ ]jk

= T νl−νk

l∑

j=1

Φ̃lj [b1, b0][U−1
∗ ]jk,

which is zero whenever k > l. Hence condition (i) is satisfied. ¤

Proof of Theorem 3

Part (i): The proof is similar to the proof of Theorem 1 in Andrews (1999). Write

s = ΛT (b− b0). The objective function is of the form

QT (b) = QT (b0)− α′T W ′
T WT ΓT s +

1
2
s′Γ′T W ′

T WT ΓT s

−α′T W ′
T WT DT RΦ(b+, b0)Λ−1

T (Γ′T W ′
T WT ΓT )−1Γ′T W ′

T WT ΓT s

+s′Γ′T W ′
T WT DT RΦ(b+, b0)Λ−1

T (Γ′T W ′
T WT ΓT )−1Γ′T W ′

T WT ΓT s

+
1
2
s′Γ′T W ′

T WT ΓT (Γ′T W ′
T WT ΓT )−1Λ−1′

T Φ′(b+, b0)R′D′
T W ′

T

×WT RΦ(b+, b0)Λ−1
T (Γ′T W ′

T WT ΓT )−1Γ′T W ′
T WT ΓT s.
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Let b̂T be the MD estimator and ŝT = ΛT (b̂T − b0). Then,

0 ≤ QT (b0)−QT (b̂T )

= Op(1)‖WT ΓT ŝT ‖ − 1
2
‖WT ΓT ŝT ‖2 + op(1)‖WT ΓT ŝT ‖

−op(1)‖WT ΓT ŝT ‖ − 1
2
op(1)‖WT ΓT ŝT ‖

where the last equality holds because αT = Op(1) and by Assumption 3. Denote

the Op(1) term by ξT and rewrite the inequality as

1
2
‖WT ΓT ŝT ‖2 ≤ ξT ‖WT ΓT ŝT ‖+ op(1)

Thus, (
‖WT ΓT ŝT ‖ − ξT

)2

≤ Op(1)

and therefore

‖ŝT ‖ ≤
∥∥∥∥(Γ′T W ′

T WT ΓT )−1

∥∥∥∥‖WT ΓT ŝT ‖ = Op(1),

which implies the desired result.

Part (ii): Follows from Theorem 3(a) in Andrews (1999). ¤

Proof of Theorem 4

We follow the arguments in Theorem 3.1 in Saikkonen (1991). Recall that α ≡ η1/2Z,

where Z ≡ N (0, Iq) and Z is independent of the random covariance matrix η and

the limit weight matrix W . Let

θ = (Γ′η−1Γ)−1Γ′η−1α, ψ = (Γ′W ′WΓ)−1(Γ′W ′Wα)

and φ = ψ − θ. It can be easily verified that IE[θφ′|η, W ] = 0, which implies

that φ and θ are independent conditional on η and W . Let C be any convex set,

symmetric about the origin, and b̂o
T an MD estimator with an optimal sequence of

weight matrices, then for any MD estimator in M:

lim
T→∞

IP{ΛT (b̂T − b0) ∈ C} = IE

[
IP [{θ + φ ∈ C}|η, W ]

]

≤ IE

[
IP [{θ ∈ C}|η, W ]

]

= lim
T→∞

IP{ΛT (b̂o
T − b0) ∈ C}
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The inequality follows from Lemma 2.3.1 in Basawa and Scott (1983). ¤

Proof of Theorem 5

Write ŝT = ΛT

(
b̂T − b0

)
. Under the assumptions of the theorem, we may write

JT = α′T W ′
T WT αT − 2α′T W ′

T WT ΓT ŝT + ŝ′T Γ′T W ′
T WT ΓT ŝT + op (1) . (24)

Since ΓT is asymptotically full rank and b0 is in the interior of B, we may write

ŝT =
(
ΓT W ′

T WT ΓT

)−1 Γ′T W ′
T WT αT + op (1)

Replacing ŝT in (24) , we have

JT = α′T W ′
T

(
Iq −WT ΓT

(
Γ′T W ′

T WT ΓT

)−1 Γ′T W ′
T

)
WT αT + op (1) .

Under the assumptions, it follows that

JT ⇒ Z ′qη
′1/2W ′

(
Iq −WΓ

(
Γ′W ′WΓ

)−1 Γ′W ′
)

Wη1/2Zq

as T →∞. Notice that Iq −WΓ (Γ′W ′WΓ)−1 Γ′W ′ is an idempotent (random) ma-

trix of rank q−p with probability one and recall that Wη1/2 is of full rank with proba-

bility one. From the spectral decomposition of η′1/2W ′
(
Iq −WΓ (Γ′W ′WΓ)−1 Γ′W ′

)
Wη1/2

and Zq being independent of η′1/2W ′
(
Iq −WΓ (Γ′W ′WΓ)−1 Γ′W ′

)
Wη1/2, the re-

sult in Part (i) follows.

Part (ii) is straightforward because Wη1/2 = Iq and all the non-zero eigenvalues

of Iq −WΓ (Γ′W ′WΓ)−1 Γ′W ′ are 1’s. ¤


