
Mechanism Design and Communication Costs

Raymond Deneckere and Sergei Severinov

USC Center for Law, Economics & Organization
 Research Paper No. C02-8

CENTER FOR LAW, ECONOMICS
AND ORGANIZATION

RESEARCH PAPER SERIES

Sponsored by the John M. Olin Foundation

University of Southern California Law School
Los Angeles, CA 90089-0071

This paper can be downloaded without charge from the Social Science Research Network
electronic library at http://papers.ssrn.com/abstract_id=304198



Mechanism Design and Communication Costs

Raymond Deneckere and Sergei Severinov ∗

First Version: December 3, 2000
This Version: September 19, 2001

Abstract

This paper focuses on implementation issues in environments where it may be costly for
the players to send certain messages. We develop an approach allowing to characterize the
set of implementable outcomes in such environments, and then apply it to derive optimal
mechanisms. The key elements of our approach are the absence of any restrictions on the
communication structure in a mechanism and the ability of the principal to screen the
agents not only on the basis of their preferences over the outcomes, but also on the basis
of their communication abilities. A number of interesting implications for the monopoly
regulation, signaling and screening is derived. In particular, we show that a monopoly
may not want to exclude low-valuation consumers if some consumers in the population
are not able to misrepresent their valuations, and why the employers may prefer to screen
applicants via multiple rounds of interviews rather than via menus of contracts. Our
findings also provide a justification for privacy laws.
JEL Nos: C72, D82
Keywords: mechanism design, implementation, communication, signaling, screening.

1 Introduction.

This paper focuses on mechanism design and implementation issues in environments where
agents participating in a mechanism sometimes incur communication costs when they send
messages to the principal. A large body of literature on mechanism design assumes that
communication in a mechanism is costless, so that an agent can send all possible messages
and, in particular, can misrepresent her private information in any way she likes. At the
same time, the view that sending certain messages may be costly is also accepted and has
been explored in a number of contributions. Such view is well grounded in common intuition
that an agent’s ability to manipulate information may be limited, even if one abstracts from
endogenous costs that a principal can impose on the agent after receiving a message from the
latter. Several reasons for this have been discussed in the literature.
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Department of Economics, University of Wisconsin, 1180 Observatory Dr., Madison WI, 53706, USA, email:
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First, it may be costly for an individual to lie for psychological reasons. (S)he may ex-
perience stress or discomfort when doing so, and a incur a disutility from providing false
information. For example, Erard and Feinstein (1994) argue that “some taxpayers appear
to be inherently honest, willing to bear their full tax burden even when faced with financial
incentives to underreport their income. Evidence for such inherently honest taxpayers derives
not just from casual introspection; it is also supported by econometric evidence and survey
findings...” A similar view is advocated by Alger and Ma (1998). They consider a health care
environment, where some physicians with stronger ethical views are not able to exaggerate the
medical problems of a patient when requesting coverage from an HMO, while other physicians
are willing to do so. Clearly, an honest person can also be viewed as someone whose cost of
misrepresenting her private information is very high.

Second, in some contexts a person may be able to make credible claims i.e., claims the
validity of which can be verified. For example, an agent may have some hard evidence to
supplement her message. Existence of such verifiable claims makes imitation harder. Indeed,
failure of an agent to produce claims containing evidence which is known to be available in a
certain state of the world should convince the principal that this state of the world has not
occurred. The ‘credible claims’ model has been studied by Lippman and Seppi (1995) who
show that very little verifiability is required for the principal to be able to elicit the truth from
a group of agents with conflicting interests. The model of evidence disclosure in court studied
by Bull and Watson (2001) can also be seen as a process where ‘credible claims’ are submitted.
Green and Laffont (1986) consider a situation where an agent can claim to be of a certain
type only if that type belongs to a subset of the type space which depends on the agent’s true
type. This situation also admits interpretation in the spirit of the ‘credible claims’ model.
Che and Gale (2000) study an optimal mechanism for selling a good to a buyer who may be
budget constrained. In this case the ability of a buyer to misrepresent her willingness to pay
is limited if the seller can ask her to post a bond and thus credibly disclose some information
about her budget.

Finally, misrepresenting the truth may require costly physical actions. Lacker and Wein-
berg (1989) argue that ‘there are many instances in which lying about the state of nature
requires more than simply sending a false signal regarding one’s private information. Often,
costly actions must be taken to lend credence to the signals being sent’. For example, a share-
cropper who underreports the crop, may have to hide part of the output. It is reasonable to
believe that there is a cost to hiding and storing the crop or borrowing it from a third party.
A similar situation is explored by Maggi and Rodriguez-Clare (1995).

In environments with communication costs, communication becomes an implementation
tool. It allows to relax a number of incentive constraints that otherwise would have to be
imposed on an allocation. To see this, consider the following example. Suppose that it is very
(infinitely) costly for an agent of the first type to send some set of messages A, while an agent
of the second type can send this set of messages at zero cost. If sending the set of messages
A in the mechanism is necessary to obtain the allocation that is designed for the agent of the
second type, then the allocation designed for the first type does not have to be better for her
than the allocation designed for the second type.

This argument, which can be attributed to Green and Laffont (1986)), explains why the
presence of communication costs has an effect on the set of implementable outcomes. Alger
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and Ma (1998) and Green and Laffont (1986) show that mechanisms in which an agent does
not always report her information truthfully allow to implement allocation profiles that are not
implementable via any mechanism with truthful reporting. Similarly, Maggi and Rodriguez-
Clare (1995) demonstrate that it may be optimal for the mechanism designer to induce the
agent to incur some falsification costs.

However, the existing contributions focus on specific situations, while the issues of char-
acterizing the set of implementable outcomes and identifying the optimal mechanisms in en-
vironments with communication costs have not been sufficiently explored. So the first goal of
this paper is to suggest a general approach to implementation in such environments, and use
it to characterize the set of implementable outcomes. We then apply our results to study the
effects of costly communication and construct optimal mechanisms in a number of situations.
We are also able to integrate the existing models within a common framework and to show
whether the mechanisms that have been exhibited in the literature are, indeed, optimal.

We consider two classes of environments. The first class includes environments where the
set of costless messages typically includes more than just truthful announcement of an agent’s
type (state of the world). The agent can make a number of statements costlessly, including such
statements that misrepresent her type. For tractability, we make an important simplification
in this case that the cost structure is binary, with the cost of sending any particular message
being either zero or infinity. The environments studied by Alger and Ma (1998), Green and
Laffont (1986), Lipman and Seppi (1995), and Erard and Feinstein (1994) belong to this class.

The second class includes environments where the only statements that an agent can make
costlessly are truthful type announcements, i.e. truthful statements about the state of the
world. We allow for non-binary cost structure in this case: the cost of sending a non-truthful
message is finite and may be large or small depending on the message itself and the true
state of the world. Lacker and Weinberg (1989) and Maggi and Rodriguez-Clare (1995) study
situations of this kind.

The key element of our approach is the absence of any restrictions on the communication
structure in a mechanism. In particular, we assume that an agent can be asked to send any
number of messages or announcements. Furthermore, we also assume that the cost which
an agent incurs when she sends a particular message does not depend on the nature or the
number of other messages that she also sends. So an agent incurs a separate cost associated
with each message or announcement.

In contrast, most existing contributions adopt an assumption (often, implicitly) that an
agent can send only one message, or make only one announcement/claim.1 Although the
revelation principle implies that this assumption is without loss of generality in environments
with costless communication, it is not so when communication is costly. Limits on the number
of messages or announcements affect the set of implementable outcomes.

In fact, we show that in environments with binary communication costs the set of imple-
mentable outcomes is maximal in a mechanism where an agent sends all messages that are
feasible for her (i.e. that can be sent at zero cost), and some allocation profiles are imple-

1This applies to Green and Laffont (1986), Alger and Ma (1998) and Erard and Feinstein (1994). In
Maggi and Rodriguez-Clare (1995) an agent can send only one costly signal, which is justifiable given their
interpretation of the model. Agents can send several messages in Lipman and Seppi (1995) and Bull and
Watson (2001), but these papers focus on a different set of issues.
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mentable only via such mechanism. This result can be seen as an extension of the revelation
principle to the costly communication case. In general, the set of messages that an agent can
send costlessly is her private information and, therefore, can be regarded as part of her type.
By reporting this set an agent essentially demonstrates her full communication abilities. This
point strengthens the analogy between our result and the revelation principle2.

To understand this result, note that because communication costs limit an agent’a ability to
mimic messages that can be sent by agents of other types, some standard incentive constraints
need not be imposed on an implementable allocation profile. A mechanism in which an
agent sends all feasible messages and makes all claims that she is able to make fully exploits
the communication cost structure and allows to eliminate the maximal possible number of
incentive constraints which otherwise have to be imposed on the allocation profile.

Then, an implementable allocation profile must satisfy all standard incentive constraints
that cannot be taken care of in the communication stage and, additionally, new incentive
constraints that prevent agents with better communication abilities from imitating agents
whose communication abilities are more modest.

Imposing these incentive constraints we can characterize the set of implementable allo-
cation profiles. This set is larger than the set of implementable outcomes in the standard
case (with no communication costs) or when an agent makes only one announcement. To
demonstrate this, we reconsider the environments studied by Green and Laffont (1986) and
Alger and Ma (1998). We show that mechanisms in which an agent is asked to make sev-
eral announcements about her type allow the principal to screen the agents better than the
mechanisms exhibited by these authors. We also extend the basic Alger and Ma (1998) model
-which we recast as a nonlinear pricing model with consumers who have privately known val-
uations and may be either ‘honest’ (unable to misreport their valuations) or ‘strategic’ (can
misrepresent them in any way they like) - to the case with a continuous distribution of types,
and characterize the optimal mechanism in this case. This problem shares many features of
the multidimensional mechanism design problem studied by Armstrong (1996) and Choné and
Rochet (1998). However, one of the central results obtained in the multidimensional screen-
ing context -that a subset of types of a positive measure is rationed i.e., get a zero quantity
allocation -does not hold in our case. We show that all ‘honest’ and ‘strategic’ agents with
positive valuations are assigned a positive quantity allocation in the optimal mechanism.

Mechanisms in which each agent sends all messages that she is able to send provide an
analytical tool allowing to characterize the set of implementable outcomes. A separate issue
is whether some of these outcomes, and especially the desirable ones, can be implemented
via simpler mechanisms. The answer to this question, of course, depends on the particular
context under consideration. In certain classes of environments it is possible to reduce the
number of messages that an agent has to send.

In particular, in the above mentioned non-linear pricing model with ‘honest’ and ‘strategic’
consumers, we characterize the set of implementable allocation profiles by using our general
result which relies on mechanisms where agents are asked to make all announcements that
are feasible for them. Then we show that any implementable allocation profile can also be

2Another way to establish a link between our result and the revelation principle is to consider additional
announcements to be part of the allocation space. Note that there are no a priori restrictions on the set of
allocations in a direct mechanism.
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implemented via a so-called ‘password’ mechanism. In the ‘password’ mechanism the agent
makes only one announcement about her valuation, after which she is asked to choose from
a menu. The offered menu itself depends on the reported valuation. Thus, this mechanism
combines the approach based on the revelation principle (reporting) with the approach based
on the taxation principle (choosing from a menu)3. It is natural to use the term ‘password’
to describe this mechanism, because an agent’s report can be seen as a password that opens
access to different menus.

In the second class of environments that we study, only truthful messages about the agent’s
type (‘state of the world’) are costless, while the cost of a misrepresentation is finite and
depends both on the true and announced types, as in Lacker and Weinberg (1989) and Maggi
and Rodriguez-Clare (1995). We demonstrate that if the type space is finite, any allocation
profile is implementable at zero communication cost. Thus, the existence of costless lies is
necessary for there to be any impediment to implementation. The intuition for this result
is straightforward: if the cost of a nontruthful report is bounded away from zero, then by
requiring an agent to state her type sufficiently many times, the principal can make the cost
of misrepresentation arbitrarily high. This result holds even if the type space is infinite,
provided the marginal cost of misrepresentation is bounded away from zero.

When the marginal cost of misrepresenting one’s type is not bounded away from zero, arbi-
trary allocations are no longer implementable, and the principal must elicit some nontruthful
reports from the agent. Still, under mild regularity conditions, we establish an approximate
implementation result: by eliciting a sufficiently large number of truthful and nontruthful
reports, the principal can come arbitrarily close to any continuously differentiable allocation
rule, and at the same time keep the communication cost arbitrarily small. Thus, the ability
of the principal to request the agent to make sufficiently many announcements significantly
expands the set of implementable allocations.

The rest of the paper is organized as follows. In section 2 we study environments with
binary cost structures and establish our general implementation result. In section 3 we gen-
eralize the model with ‘honest’ and ‘strategic’ agents to a continuous type space. In section 4
we study environments without costless nontruthful messages. Section 5 concludes.

2 Binary Cost Structure.

We consider an environment with one principal and one agent. The set of decisions (alloca-
tions) controlled by the principal is denoted by X, and its typical element is denoted by x.
The agent has utility function u(x, θ) with utility parameter θ, which is private information
to the agent. Let Θ denote the space of possible values of the utility parameters. Further,
let C denote the admissible communication set i.e., the set of statements about the true state
of the world, or messages, that can be made by an agent and understood by the principal4.
We assume that C is sufficiently large, so that claims of the form “my utility parameter is
θ̂” belong to C for all θ̂ ∈ Θ. With a slight abuse of notation, the latter assumption can be

3We are grateful to Jacques Cremer for pointing our this interpretation.
4In the sequel, we use words “message,” “claim,” ”statement,” and “announcement” interchangeably. They

all denote a minimal unit of communication i.e., an element of C.
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written as Θ ⊂ C. We also consider situations where Θ ≡ C.
The communication possibilities of a particular agent are characterized by her feasible

communication set M ⊂ C. If an agent makes statement (sends message) m, she incurs zero
cost if m ∈ M and an infinite (very large) cost if m 6∈ M. Importantly, we assume that
the cost of making any particular statement is independent of other statements that an agent
also makes. Therefore, an agent with feasible communication set M can make a collection
of statements (send a collection of messages) if and only if every element in this collection
belongs to M.

The set M is also agent’s private information. Therefore, a full description of her type
includes not only her utility parameter, but also her feasible communication set. Accordingly,
we define an agent’s type as the vector t = (θ,M). Let T ⊂ Θ × P (C) denote the set of all
feasible types where P (C) denotes the ‘power set’ (set of all subsets) of C. The probability
distribution F (.) over T is common knowledge. We do not assume any specific relation between
θ and M, except that an agent can always tell the truth i.e., θ ∈ M. Thus any environment
is characterized by a tuple {X, C, u(., , ), T, F (.)}.

Example 1 Green and Laffont (1986): C = Θ. The preference parameter θ determines M
uniquely, and the correspondence that maps θ to M is common knowledge. In this case, one
can use notation M(θ) instead of M. Defining the type as t = (θ, M(θ)) is redundant, as the
utility parameter θ provides a sufficient description of the agent’s private information.

Example 2 Alger and Ma (1998): C = Θ = {θL, θH}. With probability α the feasible commu-
nication set M of an agent with valuation θK , K ∈ {L,H}, is {θK} (the agent is ‘honest’),
and with probability 1 − α it is {θL, θH} (the agent is ‘strategic’). In this environment the
utility parameter θ does not determine the feasible communication set M uniquely. However,
there is a correlation between θ and M.

Example 3 The ‘credible claims’ model of Lipman and Seppi (1995). See also Bull and
Watson (2001). An agent with utility parameter θ can make nθ claims (statements) i.e., Mθ =
{b1

θ, ..., b
nθ
θ } where bi

θ is her i-th feasible claim, and cannot make any claim (statement) that is
not in Mθ. As in Example 1, the correspondence mapping θ to Mθ is common knowledge.

Our main goal is to characterize the set of implementable allocation profiles, or social
choice functions. As we focus on the implementability question, we will consider the largest
possible set of mechanisms and avoid imposing any restrictions on it. In particular, we allow
for mechanisms in the communication stage of which an agent may be requested to make a
number of statements and send a number of messages about her preference parameter. This is
the key point that distinguishes our approach to implementation. As we have noted above, in
most contributions studying mechanisms with costly communication, it is assumed, sometimes
implicitly, that an agent can make only one statement or send only one message.

Mechanisms in which an agent sends several messages are natural in the context of the
‘credible claims’ model where the claims can have various contents. However, in the case
where C = Θ further explanation of our approach is warranted.

Suppose that the agent’s type is t0 = (θ0,M0). Then if the principal requests the agent
to submit n announcements regarding her true utility parameter, the set of feasible reports
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includes all arrays (θ̂1, ..., θ̂n) s.t. θ̂i ∈M0 for each i ∈ {1, ..., n}. However, it is not necessarily
the case that θ̂1 = θ̂1 = ... = θ̂n. That is, the agent can make different (i.e. conflicting) state-
ments about her utility parameter. But since the cost of making any statement in independent
of other statements made by the agent, no matter how many statements she makes, she can
never announce a θ̂ which does not belong to her feasible communication set M.

This can be interpreted in several ways. First, an agent may be requested to submit several
documents and report her utility parameter in each of them. For example, income has to be
reported on income tax forms, loan and mortgage applications, children’s college financial aid
forms. Moreover, questions requesting the same information can be stated in a different form in
each document, yet at the same time be unambiguous. In particular, questions about income,
wealth, education and experience can be worded differently in different documents. Then, the
ability of an agent to answer these questions differently will depend on her communication
abilities, or on her personal cost of sending messages providing conflicting information.

Second, the principal can hire several deputies each of whom requests a separate report
from the agent. For example, different departments of the same organization often collect the
same information about employees, clients, customers or suppliers.

As we will show below, mechanisms where agents send multiple messages (make a num-
ber of statements) allow to screen different types of agents to the largest possible extent by
exploiting the costly communication structure. Therefore, it is necessary to consider such
mechanisms when we wish to characterize the set of implementable outcomes. They provide
a universal analytical tool that allows to achieve this goal. Below we will also investigate
whether optimal allocation profiles can be implemented via mechanisms in which the number
of messages that an agent is required to send is small. The relation between the former and
the latter mechanisms is the same as the relation between direct mechanisms and indirect
mechanisms (such as auctions) that implement the same outcomes.

Formally, let us fix a social choice function f(θ,M) : T 7→ X and consider mechanism
G : P(C ∪ φ) 7→ X defined as follows : G(θ,M) = f(θ,M ∪ {θ}) if (θ, M ∪ {θ}) ∈ T , and
G(θ, M) = x otherwise, where x is the ‘worst outcome’ that minimizes u(x, θ) ∀θ ∈ Θ. We
assume that such x exists. In an environment with transferable utility the latter assumption
is without loss of generality.

In mechanism G(.) the agent is asked to make all the statements that she can make. By
convention, the mechanism designer interprets the first statement as her true utility parameter.
The subsequent statements are interpreted simply as elements of her feasible communication
set M.

We will say that an agent’s report is M−truthful if she announces her true utility param-
eter in her first statement, and also makes all statements/sends all messages that are feasible
for her i.e., the agent of type t = (θ,M) announces (θ, m1, ..., mn) s.t. {m1, ..., mn} = M\θ 5.
In this case we will say that mechanism G(.) M−truthfully implements social choice function
f(.). The following is the central result of this section.

Theorem 1 Any implementable social choice function is M−truthfully implementable via
mechanism G(·). Furthermore, there exists an environment {X, C, u(., .), T, F (.)} and social

5It is intuitive to call such reporting strategy ‘truthful’ because the agent fully reveals both her utility
parameter and her feasible communication set.

7



choice function f(.) such that f(.) is not implementable via any mechanism with message space
Θ, but is implementable via mechanism G(·) : P(C ∪ φ) 7→ X.

Proof: Fix an environment {X, C, u(., , ), T, F (.)}, and suppose that the social choice func-
tion f(.) is implementable via some mechanism (S, g(.)) where S is the strategy space, and
g : S 7→ X is outcome function. Let s(t) be an equilibrium strategy of type t = (θ,M) in
this mechanism. Using the same technique as in the proof of the revelation principle, define
outcome function G(.) as follows: G(t) = g(s(t)) ∀t ∈ T and G(t) = x ∀t 6∈ T .

Let us show that submitting an M−truthful report is an optimal strategy for agent of type
t in the mechanism with outcome function G(t). Suppose to the contrary that a profitable
deviation does exist in this mechanism, i.e. the agent of type t ≡ (θ,M) gets a higher payoff
if she announces t′ ≡ (θ′,M′) and obtains the outcome g(s(t′)). Then s(t′) cannot be feasible
for the agent of type t in mechanism (S, g(.)). Therefore, action s(t′) must involve sending
a message m′′ s.t. m′′ ∈ M′, but m′′ 6∈ M. However, this implies that t cannot announce
t′ ≡ (θ′,M′) in mechanism G(·). This contradiction completes the proof of the first part of
the theorem.

To prove that the mechanism G(·) permits to implement a larger set of social choice
functions than would a mechanism with message space Θ in which an agent makes only one
statement about her utility parameter, let us consider an example from Green and Laffont
(1986): X = {x1, x2, x3}, Θ = {θ1, θ2, θ3}, and the relation between θ and M is character-
ized by the following correspondence M(θ) which is common knowledge: M(θ1) = {θ1, θ2},
M(θ2) = {θ2, θ3}, M(θ3) = {θ3}. We assume the following payoff structure:

u(x1, θi) < u(x3, θi) < u(x2, θi) ∀i ∈ {1, 2, 3}

Fix the social choice function f(θ1,M(θ1)) = x1, f(θ2,M(θ2)) = x2, f(θ3,M(θ3)) = x3,
and consider any mechanism in which the agent’s message consists of a single element of
Θ. Then f(.) can be implemented only if all three agent types send different messages.
Since type θ3 can only send message “θ3”, it follows that type θ2 must send message “θ2” in
equilibrium. However, then type θ1 would imitate the message sent by type θ2. Thus, f(.) is
not implementable.

On the other hand, f(.) is M− truthfully implementable via the mechanism with the
following outcome function G(.): G(θ1, θ2) = x1, G(θ2, θ3) = x2, G(θ3) = x3, and G(S) = x1,
where S is any other report. Q.E.D.

The intuition behind theorem 1 is easy to understand. When two types have different
feasible communication sets, one of them (say, type A) cannot make all the statements that
are feasible for the other (say, type B). If this property is exploited in a mechanism, then
type A cannot imitate type B in the communication stage. Therefore, an allocation profile
implemented via such mechanism need not satisfy standard incentive constraint that type A
gets a higher payoff from the allocation designed for her than from the allocation designed
for type B. Obviously, the larger is the set of incentive constraints that are taken care of in
this way without being imposed on the allocation profile, the less restricted is the allocation
profile and the larger is the set of implementable social choice functions. Because mechanism
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G(.) requires the agent to make all feasible statements, it allows to take care of the maximum
possible number of incentive constraints at the communication stage, without having to impose
them on the allocation profile. Therefore the set of implementable social choice functions is
maximal under G(.).

Specifically, in mechanism G(.) it is impossible for any type (θ,M) to obtain the allocation
designed for type (θ′,M′) if the former cannot fully mimic the latter i.e., ifM′\M 6= φ. Hence
we have:

Corollary 1 A social choice function f : T → X is implementable if and only if for all
(θ,M) ∈ T the following incentive constraints are satisfied :

u(f(θ,M), θ) ≥ u(f(θ′,M′), θ) ∀(θ′,M′) ∈ T such that M′ ⊂M.

Corollary 1 specifies which incentive constraints need to be imposed on the allocation pro-
file. Together with theorem 1, it provides a method for characterizing the set of implementable
social choice functions. For this reason, and also because the agent reports her type truthfully
in mechanism G(.), where truthfulness has to be broadly construed, theorem 1 can be viewed
as an extension of the revelation principle to the costly communication stage.

Both Green and Laffont (1986) and Alger and Ma (1998) demonstrate the failure of the
revelation principle when type is defined in a standard way as the utility parameter θ, and
communication stage involves only one announcement by the agent. Our result is complemen-
tary, since we use a broader definition of type and consider mechanisms with a larger space of
reporting strategies.

There are nevertheless some notable special cases in which expanding the set of reports
beyond Θ does not enlarge the set of implementable social choice functions, and a single
announcement of the utility parameter θ is sufficient. In particular, consider the following:

Nested Range Condition (NRC) (Green and Laffont 1986): For any three distinct
elements θ1, θ2, θ3 ∈ Θ, if θ2 ∈ M(θ1) and θ3 ∈ M(θ2), then θ3 ∈ M(θ1).

Green and Laffont (1986) establish that in the context of their model (see Example 1),
NRC is a sufficient condition for the revelation principle to hold in the traditional sense. So,
when NRC holds, a social choice functions is implementable if and only if it is implementable
via a mechanism in which the agent truthfully reports her preference parameter θ. They also
demonstrate that the revelation principle fails when NRC does nor hold: in some environments
there are social choice functions that are implementable but not truthfully implementable via
a direct mechanism with message space Θ.

In the context of our model where feasible communication set M is not generally a de-
terministic function of the utility parameter θ and the communication space C may be larger
than Θ, there is the following useful version of the Nested Range Condition:

Nested-Range Condition* (NRC*): For any (θ,M) and (θ′,M′) ∈ T , if θ′ ∈ M,
then M′ ⊂M.

It is easily seen that NRC* is equivalent to NRC. Indeed, suppose that NRC* holds, and
consider (θ,M) and (θ,M′) that both belong to T . Since the agent always has the ability to
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tell the truth, we have θ ∈M and θ ∈M′. NRC* then implies thatM = M′, so that there is a
one-to-one relationship between θ and M, which we may denote by M c(θ). As a consequence,
the condition NRC* reduces to the requirement that if θ′ ∈ M c(θ) then M c(θ′) ⊂ M c(θ),
which is just NRC.

Under NRC* our model becomes essentially equivalent to the one studied by Green and
Laffont (1986) even though we may have C 6= Θ. So it is easy to see, that in this case their
Theorem 1 also applies, and all implementable social choice functions can be implemented via
a mechanism where an agent is only asked to report her preference parameter θ once, and she
reports truthfully.

However, in the context of our model condition NRC* is very restrictive. It is violated if
there exists even a single pair of types that have the same utility parameter θ, but differ in
their communication abilities. When NRC* does not hold, theorem 1 shows that a mechanism
in which the agent sends several messages allows to implement a larger set of social choice
functions than could be implemented via a mechanism in which the agent is asked to send only
one message about her preference parameter. To see just how dramatic an effect of sending
several messages can be, consider the following condition.

Non-Nested Range Condition (NNRC*): Consider any (θ,M), (θ′,M′) ∈ T s.t.
either θ 6= θ′ or M 6= M′. Then ∃θ′′ s.t. θ′′ ∈M′ and θ′′ /∈M.

NNRC* can also be rewritten as follows. Consider any (θ,M), (θ′,M′) ∈ T s.t. either
θ 6= θ′ or M 6= M′. Then, M4M′ 6= φ. It is easy to see that under NNRC*, an agent’s
communication abilities uniquely determine her utility parameter θ, i.e. the set of types T is
such that the mapping from feasible communication sets M into θ is a function.

NNRC* is essentially the opposite of NRC*. Under NRC*, if an agent with preference
parameter θ1 can claim to have preference parameter θ2, she can always fully mimic her by
making all statements that are feasible for an agent with preference parameter θ2. Under
NNRC*, no type can make the same set of announcements as another type, and hence fully
mimic this other type. We therefore have:

Theorem 2 Suppose NNRC* holds. Then any social choice function f : T → X is imple-
mentable.

Proof: By corollary 1 the set of incentive constraints that an implementable social choice
function has to satisfy is empty. Therefore, any social choice function is implementable.
Q.E.D.

Whenever condition NNRC* holds, perfect screening of agents is achieved by identifying
their communication abilities. Condition NNRC* is quite strong, so typically we would expect
the communication structure to be somewhere in between the extreme cases described by
NRC* and NNRC*.

In such intermediate cases, all agent types can be divided into two categories. The first
category includes only such types (θ,M) that for all (θ′,M′) ∈ T satisfying θ′ ∈ M we have
M′ \M 6= φ. The second category includes such types (θ,M) ∈ T that ∃(θ′′,M′′) ∈ T for
which M′′ ⊂ M. Corollary 1 implies that no incentive constraints preventing types from

10



the first category from imitating any other types need to be imposed on the implementable
allocation profile. So, in the optimal mechanism maximizing the principal’s profits all types
from the first category earn zero surplus. To be more specific, consider the following example.

Example 4 The principal (firm) with increasing convex cost function c(q) sells quantity q of
the good to an agent (consumer) with valuation θv(q), where v(q) is a concave non-negative
function. The parameter θ is privately known by the agent and takes one of n possible values
0 < θ1 < ... < θn, where n > 2. The probability that θ = θi is equal to πi > 0. The principal’s
objective is to maximize the expected value of p− c(q) where p is a transfer paid by the agent.
The agent has limited ability to misrepresent the true value of θ: M(θi) = {θi−1, θi} for i > 1,
and M(θ1) = θ1.

According to Corollary 1, the only incentive constraint that an implementable allocation
profile needs to satisfy is that the agent with valuation θ2 not be willing to mimic the agent
with valuation θ1. Then, it is easy to see that the optimal mechanism will implement efficient
quantities for all types except θ1. Only an agent with valuation θ2 will obtain a positive surplus,
while the rest will be held to their reservation utility levels.

This is so because the agent with valuation θ2 has a reporting advantage relative to all
other types. Specifically, an agent with valuation θi where 1 < i < n can send a message θi−1

which distinguishes her from an agent with valuation θi+1. Yet, there is no message that an
agent with valuation θ1 can send that is not available to the agent with valuation θ2. If the
former had such a message available, for example if she could report θn, then the agent with
valuation θ2 would not receive any surplus either.

This example and the discussion preceding it highlight the importance of agent’s commu-
nication abilities as a determinant of the amount of surplus that she earns. When an agent’s
communication abilities are limited, she may not earn any surplus even if her privately known
productivity is high, while less productive agents with better communication abilities will be
able to obtain a positive surplus.

Note that the optimal allocation profile in example 4 can be implemented via a mechanism
that requires the agent to send only one message. We will show how this can be done below,
when we discuss the so-called ‘password’ mechanism.

Finally, let us apply our results to the model of Alger and Ma (1998) (see Example 2).
To focus on the main issues, we restate their model as a two-party non-linear pricing model
similar to that in Example 4. Specifically, a principal (a firm or an HMO, as in the original
model) with an increasing convex cost function c(q) sells quantity q of the good to an agent
(consumer) with valuation θv(q) where v(q) is a concave non-negative function. The parameter
θ can take 2 possible values: low θL with probability π and high θH with complementary
probability. Further, with probability α independent of the realized valuation parameter the
agent is ‘strategic’ so that M(θK) = {θL, θH} (K ∈ {L,H}). With complementary probability
1− α the agent is ‘honest’ so that M(θK) = θK (K ∈ {L,H}).

Alger and Ma (1998) consider mechanisms in which an agent makes only one statement
about her utility parameter. Thus, she reports either θL or θH , and therefore the principal can
only implement allocation profiles that consist of at most two different quantity-transfer pairs.
The results of Alger and Ma (1998) restated in the nonlinear pricing context are as follows.
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When α is sufficiently small, i.e. the agent is very likely to be ‘honest,’ it is optimal for the
principal to use a mechanism in which an agent who reports valuation θH is assigned a quantity
q∗H that is efficient when the agent’s valuation is high i.e., satisfies θHv′(q∗H) = c′(q∗H), and
pays a transfer pH = θHv(q∗H). An agent who reports a low valuation is assigned a quantity
q∗L that is efficient when the agent’s valuation is low i.e., satisfies θLv′(q∗L) = c′(q∗L), and pays
a transfer pL = θLv(q∗L). In equilibrium, an ‘honest’ agent with high valuation θH reports
θH , and thus obtains the first allocation that leaves her with zero surplus. Both the ‘honest’
and ‘strategic’ agents with valuation θL and ‘strategic’ agent with valuation θH report θL,
and obtain the second allocation. Thus, the only type who earns a positive surplus is the
‘strategic’ agent with high valuation.

When only a single report is allowed, this allocation profile is optimal, because when it is
very likely that the agent is ‘honest’, the principal prefers to offer a mechanism that extracts
as much surplus as possible from ‘honest’ types. The principal can achieve this goal by offering
quantity-transfer pairs that are efficient when the agent reports her true valuation and leave
no surplus to such agent. The drawback of this mechanism lies in the fact that it induces
‘strategic’ high-value agent to report a low valuation and consume an inefficient quantity.

However, the principal can implement a more efficient and more profitable allocation profile
via mechanism G(.) in which the agent has to make two statements regarding her valuation.
In this case, agent’s report can be denoted by (θ̂1, θ̂2).

The inability of an ‘honest’ agent to lie implies that both her first and second messages
in this mechanism are equal to her true valuation. Since without loss of generality the agent
reports M−truthfully (see theorem 1), we can focus on equilibria where ‘strategic’ high-
valuation and low-valuation types report (θH , θL) and (θL, θH) respectively. Thus, a ‘strategic’
agent makes two different statements and is offered an allocation that depends on the order of
announcements. Mechanism G(.) therefore allows to implement allocation profiles that consist
of up to four different quantity-transfer pairs. The only incentive constraints that have to be
imposed on an allocation profile implementable via this mechanism are that a ‘strategic’ agent
(with any valuation) gets a higher payoff from the allocation designed for her than from an
allocation designed for any other type. By corollary 1, this is the minimal set of incentive
constraints that an implementable allocation profile has to satisfy.

Imposing these incentive constraints on the principal’s maximization problem, it is easy to
derive the following optimal allocation profile. First, both ‘honest’ and ‘strategic’ high-value
agents are assigned efficient quantity q∗H s.t. θHv′(q∗H) = c′(q∗H). Both ‘honest’ and ‘strategic’
low-value agent are assigned quantity qL which satisfies

(
θL − απ(θH − θL)

1− π

)
v′(qL) = c′(qL)

We will assume that qL is positive.
The ‘honest’ high-valuation agent pays transfer θHv(q∗H), leaving her no surplus, while the

‘strategic’ high-valuation agent pays a lower transfer equal to θHv(q∗H)− (θH − θL)v(qL). The
second term reflects the informational rent which this type could earn by imitating a low-value
agent. Both low-valuation types pay transfer θLv(qL) which holds them to their reservation
level. Note that qL is below the efficient quantity which reflects the usual tradeoff between
efficiency and informational rent. However, the distortion is smaller than in the standard case
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without communication costs, because informational rent has to be paid only to a ‘strategic’
high-value agent, and not to her ‘honest’ counterpart.

Mechanism G(.) is more profitable for the principal. It is also more socially efficient, as it
generates smaller quantity distortion than any mechanism in which the agent makes only one
statement about her valuation. Intuitively, this is achieved because mechanism G(.) induces
those types who are capable of lying to send conflicting messages: state once that her type is
θH and state once that it is θL. As a result, it becomes possible to identify an ‘honest’ agent
and her valuation for free, and at the same time to screen ‘strategic’ agents.

An interesting and possibly surprising implication of the results in this section is that
individuals who make conflicting or contradictory statements should not be penalized for
such behavior. In the optimal mechanism these individuals obtain higher payoffs than the
individuals who do not make contradictory statements and are less suspect of lying. This
is done to prevent individuals with low personal cost of lying from imitating someone else’s
behavior and to improve the overall efficiency of the mechanism.

Rewarding individuals who make contradictory statements rather than punishing them
does not appear to be at odds with reality. For example, there is a wide range of institutions
that collect the same information from individuals, but perform their functions separately from
each other, without cross-checking information submitted to them. In many cases, sharing
such information about individuals is prohibited by privacy laws. Privacy laws then appear
to encourage individuals to make contradictory statements, and our results explain why such
institutional design may be optimal.

A case in point is statements about income. An individual has to declare her income to
the Internal Revenue Service for tax purposes, to the banks when applying for a loan, to
colleges and Universities with regards to financial aid for the children. These institutions do
not crosscheck information with each other. This leaves open the possibility that an individual
might submit different reports to different institutions. Specifically, people who are more prone
to misrepresentation or have weaker ethical norms could overstate their income when applying
for a loan, and/or understate it on the financial aid form, but still report the truth to the
IRS. From the social welfare point of view, this outcome can dominate the outcome which
would arise if these institutions cross-checked individuals’ reports and imposed penalties on
the ones whose statements are contradictory. If this was the case, the consumers who are
prone to misrepresentation may still misreport their income, but then they will be also be
misrepresenting it for tax purposes, which conceivably could result in a higher social welfare
loss. Furthermore, some individuals may decide to work less and earn less income because
they can no longer understate their income to colleges. Thus, our results suggests that privacy
laws prohibiting information sharing across institutions may be a part of a socially optimal
design of institutions.

To complete this section, we address the issue of implementing optimal allocation profiles
via mechanisms in which an agent sends a smaller number of messages than in mechanism G(.).
We do it for two reasons. First of all, mechanisms that rely on fewer messages are simpler and,
therefore, easier to implement. Second, mechanisms in which agents send conflicting messages
and are rewarded for this may be unacceptable in certain situations for political or ethical
reasons. For example, this is likely to be the case in the taxation situation where an agent
has to report her income to the tax authority.
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In several environments that we have considered above, and in particular in the model
with ‘honest’ and ‘strategic’ agents as well as in Example 4, mechanism G(.) can be replaced
with the following so-called ‘password’ mechanism. In the ‘password’ mechanism an agent is
asked to report her utility parameter only once. After she makes her announcement, the agent
is offered a choice from a menu of possible allocations. The offered menu itself depends on the
reported utility parameter. Thus, the agent’s message can be seen as a ‘password’ because its
content determines which menu the agent gains access to.

In the non-linear pricing model with ‘honest’ and ‘strategic’ agents that we have studied
above, the derived optimal allocation can be implemented via a ‘password’ mechanism in
the following way. An agent is asked to report whether her valuation is high or low. If
a high valuation is reported, the agent is assigned the allocation designed for the ‘honest’
high-valuation type. If a low valuation is reported, the agent is offered a menu consisting
of two allocations: (q∗H , θHv(q∗H) − (θH − θL)v(qL)) which is designed for ‘strategic’ high-
value type, and (qL, θLv(qL)) which is designed for the low-value types. It is easy to see that
this mechanism implements our optimal allocation profile. Only ‘honest’ high-value type will
report a high valuation. All the other types will report a low valuation and then make the
‘right’ choices from the menu: pick the allocations that were designed for them.

Similarly, a ‘password’ mechanism can be used to implement the optimal allocation in
Example 4. In this case, the agent is also asked to announce her valuation once. If valuation
θi (2 ≤ 1 ≤ n − 1) is reported, the allocation designed for an agent with valuation θi+1 is
assigned. If valuation θ1 is announced, the agent is offered a menu which consists of the
allocations designed for an agent with valuation θ1 and an agent with valuation θ2.

The ‘password’ mechanism is essentially a ‘hybrid’ mechanism. It combines an implemen-
tation method based on the revelation principle (reporting the valuation) with an implemen-
tation method based on the taxation principle (choosing from a menu).

3 ‘Honest’ and ‘Strategic’ Agents: A Generalization.

In this section we generalize the analysis of the model with ‘honest’ and ‘strategic’ agents to
the case where the set of possible valuations is infinite, instead of a two-point one. Specifically,
we consider the same non-linear pricing model as in the previous section. An agent (consumer)
has valuation θq for quantity q of the good where θ is consumer’s private information and can
take any value in the interval [0, 1]. For simplicity, we assume that θ is distributed uniformly
on this interval and that, independently of her valuation, the agent is ‘honest’ and cannot lie
about her valuation with probability 1/2. The agent’s reservation utility level is 0.

The principal (firm) designs the mechanism to trade with the agent. Its cost of producing
quantity q of the output is equal to q2

2 . These simplifying assumptions are made for technical
reasons, as the mechanism design problem in this environment is non-trivial. We will focus on
finding the optimal mechanism which maximizes the principal’s expected payoff. This allows
us to highlight the differences between the optimal mechanisms in this environment and in the
standard non-linear pricing model where all agents are ‘strategic’ and can misrepresent their
valuations.

Theorem 1 and Corollary 1 imply that the only incentive constraints that have to be im-
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posed on the implementable allocation profile are the ones that ensure that a ‘strategic’ agent
is unwilling to imitate either a ‘strategic’ agent with a different valuation or any ‘honest’ agent.
An ‘honest’ agent’s valuation can be identified at the communication stage of a mechanism.

Then, it is sufficient to consider a mechanism in which an agent is asked to make only
two statements θ1 and θ2 about her valuation. Note that an ‘honest’ agent with valuation
θ can only send messages θ1 and θ2 s.t. θ1 = θ2 = θ. So the mechanism should assign an
allocation designed for this type after receiving such pair of messages. Further, if an agent
sends messages θ1 and θ2 s.t. θ1 6= θ2 the mechanism should assign the allocation designed
for ‘strategic’ agent with valuation θ1. Clearly, in this mechanism an ‘honest’ agent is unable
to imitate a ‘strategic’ agent, and the only incentive constraints that need to be imposed on
the allocation profile for it to be implementable are that a ‘strategic’ agent with valuation θ
gets a higher payoff from the allocation designed for her than from any other allocation. By
Corollary 1 this is the minimal set of incentive constraints that has to be imposed on any
implementable allocation profile.

Furthermore, any implementable allocation profile can also be implemented via the follow-
ing ‘password mechanism’ in which an agent is asked to report her valuation only once. If an
agent announces valuation θ > 0, then the mechanism assigns the allocation designed for an
‘honest’ agent with valuation θ. If an agent reports θ = 0, then she is offered a menu consisting
of allocations designed for all ‘strategic’ types and the allocation designed for ‘honest’ agent
with valuation 0. In this ‘password’ mechanism report θ = 0 can be considered as a ‘password’
that an agent needs to send to access the menu of allocations designed for ‘strategic’ types.
Since an ‘honest’ agent with valuation θ > 0 is unable to send such message, she cannot access
this menu. Again, the only incentive constraints that need to be imposed in this mechanism
are those that prevent a ‘strategic’ agent from imitating any other agent type.

The optimal allocation profile is characterized in the following theorem.

Theorem 3 The optimal allocation profile which maximizes the principal’s expected profits
and which can be implemented either via the mechanism with two announcements or via the
‘password’ mechanism is as follows:

The quantity allocation q(θ) to the ‘strategic’ agent with valuation θ, and the transfer ts(θ)
paid by her, are given by:

q(θ) =

{ √
3
√

3
(
√

3− 1)
√

3+1θ
√

3+1 if θ ∈ [0, 1
3−√3

]
2θ − 1 if θ ∈ [ 1

3−√3
, 1]

ts(θ) = θq(θ)−
∫ 1

0
q(s)ds

The quantity allocation g(θ) to the ‘honest’ agent with valuation θ, and the transfer tτ (θ) paid
by her, are given by:

g(θ) =





√
3
√

3
θ
√

3+1
(
= q( θ√

3−1
)
)

if θ ∈ [0, 1√
3
]

θ if θ ∈ [ 1√
3
, 1]

tτ (θ) = θg(θ)
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Before proceeding with the proof of the theorem, let us describe the results in an intuitive
way. The problem of designing an optimal mechanism is non-standard because two sets of
incentive constraints have to hold for a ‘strategic’ agent: she should not be willing to imitate
either a ‘strategic’ agent with a different valuation or an ‘honest’ agent. It is important to
understand which of these constraints are binding in an optimal mechanism.

First, we establish that the standard ‘downward’ incentive constraints between strategic
types are still binding, which implies that the surplus (informational rent) U(θ) that a ‘strate-
gic’ agent with valuation θ earns is equal to

∫ θ
0 q(x)dx. (It can be shown that U(0) = 0.)

In addition, there is another binding constraint for a ‘strategic’ agent with valuation θ in
the ‘lower’ part of the valuation space [0, 1

3−√3
]: she is just indifferent between the allocation

designed for her and the allocation designed for an ‘honest’ agent with a lower valuation
r(θ) = (

√
3 − 1)θ. Since all ‘honest’ agents are held at their reservation utility levels, this

implies that U(θ) = g(r(θ))(θ − r(θ)).
To reduce informational rent U(θ) of a ‘strategic’ agent with valuation θ ∈ [0, 1

3−√3
] the

principal has to decrease the quantities assigned to ‘strategic’ agents with valuations less
than θ and the quantity g(r(θ)) assigned to an ‘honest’ agent with valuation r(θ). Thus,
reducing those rents imposes higher efficiency losses when ‘honest’ agents are present than in
the standard situation where all agents are ‘strategic.’

As a result, the well-known tradeoff between efficiency and informational rents is resolved
in favor of higher efficiency i.e., the downward distortion in quantity allocations assigned to
‘strategic’ types with valuations on the interval [0, 1

3−√3
] is less than the downward distortion in

the quantity allocations qn(θ) assigned to the agents with the same valuations in the standard
non-linear pricing model. Note that qn(θ) = max{0, 2θ−1} under the simplifying assumptions
made above, and the efficient quantity is q∗(θ) = θ. Then for θ ∈ (0, 1

3−√3
) we have:

qn(θ) < q(θ) < g(θ) ≤ q∗(θ) = θ.

The last inequality is strict when θ < r( 1
3−√3

) = 1√
3
: some downward distortion in g(θ) is still

optimal on this interval. The inequality q(θ) < g(θ) holds because either g(θ) = q∗(θ) = θ or
∃θ′ > θ s.t. U(θ′) = g(θ)(θ′ − θ). On the other hand, U(θ′) =

∫ θ′
0 q(x)dx > q(θ)(θ′ − θ). The

last inequality follows because q(θ) is increasing.
On the ‘upper’ part [ 1

3−√3
, 1] of the valuation space, incentive constraints saying that

‘strategic’ agent is not willing to imitate an ‘honest’ agent are no longer binding. This happens
because informational rent U(θ) =

∫ θ
0 q(x)dx of a strategic agent becomes large enough to make

imitating an ‘honest’ agent suboptimal. Therefore, as far as ‘strategic’ agents are concerned,
the situation becomes identical to the standard non-linear pricing model. Hence q(θ) =
2θ − 1 on this interval. This also implies that the quantity allocation to an ‘honest’ agent
with valuation above r( 1

3−√3
) = 1√

3
is unrestricted by any binding incentive constraint from

‘strategic’ agents. Therefore, g(θ) = q∗ = θ for θ ∈ [ 1√
3
, 1].

Note that because qn(θ) < q(θ) on (0, 1
3−√3

], ‘strategic’ agents obtain a larger informational
rent in the presence of ‘honest’ agents than in a standard situation where there are no ‘honest’
agents. ‘Strategic’ agents are paid more not to imitate the ‘honest’ ones.
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A notable feature of the optimal allocation is absence of rationing: all agents whose val-
uations exceed 0 are assigned a positive quantity. This result stands in contrast with the
standard case. In the non-linear pricing model with the same functional forms but without
‘honest’ types it is optimal to assign zero quantity to all types with valuations below 1/2.
Furthermore, rationing is also generic in the multidimensional non-linear pricing model, as
shown by Armstrong (1996).

Absence of rationing in our mechanism is due to the ‘common cutoff’ property established
in lemma 4: if the principal rations ‘strategic’ agents by assigning zero quantity to those of
them whose valuations are below some positive threshold level θ > 0, then she also has to
assign zero quantity to ‘honest’ agents whose valuations are below θ. Yet, the principal can
extract full surplus from ‘honest’ agents. This makes rationing suboptimal.

Proof of theorem 3: Corollary 1 implies that any implementable allocation profile
{(q(θ), ts(θ)), (g(θ), tτ (θ))} must satisfy the following set of incentive constraints:

q(θ)θ − ts(θ) ≥ q(θ′)θ − ts(θ′) ∀θ, θ′ ∈ [0, 1] (1)
q(θ)θ − ts(θ) ≥ g(θ′)θ − tτ (θ′) ∀θ, θ′ ∈ [0, 1] (2)

Mechanisms that implement allocation profiles that satisfy this set of incentive constraints
have been described above. Also, the following individual rationality constraints have to be
satisfied ∀θ ∈ [0, 1]:

q(θ)θ − ts(θ) ≥ 0 (3)
g(θ)θ − tτ (θ) ≥ 0 (4)

Thus, optimal allocation profile solves the following problem:

max
(q(θ),ts(θ)),(g(θ),tτ (θ))

1/2
∫ 1

0

(
ts(θ)− q(θ)2

2

)
dθ + 1/2

∫ 1

0

(
tτ (θ)− g(θ)2

2

)
dθ (5)

subject to (1), (2) (3), (4)

The individual rationality constraint (4) of an ‘honest’ agent with any valuation must be bind-
ing in an optimal mechanism. Otherwise, the principal can increase her profits by increasing
the transfer required from such agent without affecting any incentive or individual rationality
constraints. It is easy to see that when (4) are binding, incentive constraints (2) are not
binding for all θ, θ′ s.t. θ > θ′.

The presence of incentive constraints (2) does not allow to use the standard ‘indirect utility’
approach to solve this problem. Our method of solution involves a number of steps. First, the
following lemma establishes sine basic properties of the solution.

Lemma 1 Optimal quantity schedules q(θ) and g(θ) have the following properties:
(i) g(θ) ≤ θ ∀θ ∈ [0, 1], and g(θ) is non-decreasing.
(ii) q(θ) is non-decreasing, and q(1) = 1. Furthermore, q(θ) has at most countably many

points of discontinuity. Right-hand and left-hand limits exist at all discontinuity points of q(θ).
(iii) Let U(θ) ≡ θq(θ) − ts(θ). Then U(θ) is uniformly continuous and a.e. (almost

everywhere) differentiable, and U(θ)− U(θ′) =
∫ θ
θ′ q(s)ds a.e..
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Proof: see the Appendix.

Lemma 1 shows that, as in a standard adverse selection problem, downwards incentive
constraints between ‘strategic’ consumers are binding. Furthermore, the family of incentive
constraints (1) holds if and only if q(θ) is nondecreasing and U(θ)−U(θ′) =

∫ θ
θ′ q(s)ds. We can

use this fact to replace (1) and substitute ts(θ) out. Further, using the fact that (4) must be
binding to substitute tτ (θ) out, and integrating U(θ) = U(0)+

∫ θ
0 q(s)ds by parts, we conclude

that problem (5) is equivalent to the following problem:

max
q(θ)≥0,g(θ)≥0,U(0)≥0

−U(0) +
∫ 1

0

(
(2θ − 1)q(θ)− q(θ)2

2

)
dθ +

∫ 1

0

(
θg(θ)− g(θ)2

2

)
dθ (6)

subject to : (i) q(θ) is nondecreasing (7)

(ii) ICT (θ, θ′) : U(θ) ≡ U(0) +
∫ θ

0
q(s)ds ≥ (θ − θ′)g(θ′) ∀θ, θ′ ∈ [0, 1] (8)

The following lemmas which are proved in the appendix establish several useful properties
of the solution.

Lemma 2 Optimal quantity schedule q(θ) is continuous on (0, 1).

Lemma 3 In the optimal mechanism U(0) = 0.

Lemma 4 Common cutoff. Optimal quantity schedules are such that ∀θ ∈ [0, 1) q(θ) = 0
if and only if g(θ) = 0.

By lemmas (1)-(3), we can without loss of generality impose the following additional con-
straints on problem (6): (iii) q(.) is continuous, (iv) g(θ) ≤ 1 = q(1), (v) U(0) = 0. The next
lemma shows that we can now replace the family of incentive constraints ICT (θ, θ′) in (8)
with a simpler family of constraints.

Lemma 5 Let r(θ) = θ − U(θ)
q(θ) if q(θ) > 0 and r(θ) = θ if q(θ) = 0. Suppose that q(.) is

nondecreasing, continuous, g(θ) ≤ 1 = q(1), and U(0) = 0. Then:
(i) r(θ) is nonnegative, nondecreasing, strictly increasing if q(.) is strictly increasing at θ, and
continuous. Furthermore, r(0) = 0.
(ii) U(θ) ≥ (θ − θ′)g(θ′) ∀θ, θ′ ∈ [0, 1] if and only if q(θ) ≥ g(r(θ)) ∀θ ∈ [0, 1].

Since r(θ) is continuous and nondecreasing and r(0) = 0, r(.) maps [0, 1] onto [0, r(1)]. The
inverse image r−1(θ̂) from [0, r(1)] is a singleton if q(.) is strictly increasing at θ s.t. r(θ) = θ̂.
However, even if r−1(θ̂) is not a single point, it is easy to see that q(r−1(θ̂)) is unique (see the
reasoning in the proof of lemma 5(i). Then we have the following important result:

Lemma 6 Fix a nondecreasing continuous quantity schedule q(θ) s.t. q(1) = 1, and set
U(0) = 0. Then optimal quantity schedule g(θ) that maximizes (6) subject to (8) is given by:

g(θ) = min{θ, q(r−1(θ))} if θ ≤ r(1)
g(θ) = θ if θ > r(1) (9)
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Proof: ¿From (6) and (8) it is easy to see that, under any schedule q(.), it is optimal to
set g(θ) ≤ 1 ∀θ ∈ [0, 1]. Therefore, we can impose g(θ) ≤ 1 as an additional constraint on
(6) without loss of generality. Then by (ii) of lemma 5, the family ICT (θ, θ′) of incentive
constraints in (8) can be replaced with the following family: q(θ) ≥ g(r(θ)) ∀θ ∈ [0, 1]. Then
the result follows by inspection of the principal’s expected profit function (6). Q.E.D.

Lemma 6 allows us to reduce the dimensionality of the principal’s maximization problem.
Since g(.) is completely determined by q(.) according to (9), q(.) remains the only choice
variable. Imposing the additional constraints (iii) − (v), which is without loss of generality,
and using (9), we conclude that the problem of maximizing (6) subject to (7) and (8) is
equivalent to the following problem:

max
q(θ)≥0

∫ r(1)

0


θ̃ min{θ̃, q(r−1(θ̃))} −

(
min{θ̃, q(r−1(θ̃))}

)2

2


 dθ̃ +

∫ 1

r(1)

s2

2
ds

+
∫ 1

0

(
θq(θ)− q(θ)2

2
− (1− θ)q(θ)

)
dθ (10)

subject to : q(.) is nondecreasing, continuous, q(1) = 1

To solve this problem, we will first relax the constraint that q(.) is nondecreasing. Later we
will check that the solution to the relaxed problem satisfies this constraint. We would like
to reinterpret (10) as an optimal control problem and solve it using Pontryagin’s Maximum
Principle. This turns out to be possible if we use the derivative q′(.) as the control variable.
Then, to apply the Maximum Principle, we have to restrict q′(.) to be piecewise continuous or,
equivalently, to assume that q(.) belongs to the space C1

p([0, 1]) of piecewise smooth (continuous
and piecewise continuously differentiable) functions on [0, 1]. Yet, we have only established
above that q(.) is a continuous function i.e., q(.) ∈ C([0, 1]) and that q′(.) exists almost
everywhere. Nevertheless, the following lemma demonstrates that we can without loss of
generality assume that q(.) ∈ C1

p([0, 1]).

Lemma 7 Suppose that q∗(θ) is a solution to maximization problem (10) on the domain
C1

p([0, 1]) . Then q∗(θ) also maximizes (10) on the domain C([0, 1]).

Proof: see the Appendix.

Lemma 7 implies that if we find a solution q∗(.) to (10) on the domain C1
p([0, 1]), then

q∗(.) will also be a solution to this problem on a larger space C([0, 1]). So, let us assume that
q(.) ∈ C1

p([0, 1]).

Note that r(θ) is differentiable whenever q(θ) is, and r′(θ) = q′(θ)U(θ)
q(θ)2

= q′(θ)(θ−r(θ))
q(θ) . Using

this expression and making a change of variables in the first integral of (10), we can rewrite
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the principal’s problem as follows:

max
q(.)≥0

∫ 1

0

(
r(θ)min{r(θ), q(θ)} − (min{r(θ), q(θ)})2

2

)
q′(θ)(θ − r(θ))

q(θ)
dθ

+
∫ 1

r(1)

s2

2
ds +

∫ 1

0
(2θ − 1)q(θ)− q(θ)2

2
dθ (11)

subject to: r′(θ) =
q′(θ)
q(θ)

(θ − r(θ)) (12)

(11) and (12) constitute an optimal control problem with control variable q′(θ), state variables
q(θ) and r(θ), and ‘scrap value’ equal to

∫ 1
r(1)

s2

2 ds = 1−r(1)3

6 at θ = 1, and constraints r(0) = 0
and q(1) = 1. We will omit the constraint q(θ) ≥ 0 for now and check that it is satisfied later.

The following is the Hamiltonian of this problem with costate variables λ(θ) and δ(θ)
associated with the laws of motion of q(θ) and r(θ) respectively:

H(q, r, λ, δ, θ) =

(
r min{r, q} − (min{r, q})2

2

)
q′(θ − r)

q
+ (2θ − 1)q − q2

2
+ λq′ + δ

q′(θ − r)
q

(13)

The transversality conditions on the costate variables are: λ(0) = 0, δ(1) = − r(1)2

2 .
The necessary first-order conditions on any given interval depend on whether on this

interval q(θ) > r(θ) (case 1) or q(θ) < r(θ) (case 2) or q(θ) = r(θ) (case 3).
There are no open intervals such that q(θ) = r(θ) for all θ in the interval (case 3). Indeed,

on such an interval we have q′(θ) = r′(θ), which in combination with (12) implies that
r(θ) = q(θ) = θ/2. Then, the following first-order conditions have to be satisfied:

−λ′(θ) =
∂H

∂q
= −q′(θ − r)

2
+ 2θ − 1− q − δ

q′

q

−δ′(θ) =
∂H

∂r
= −q′

(
θ − 3r

2
− δ

r

)

0 =
∂H

∂q′
=

r2

2
+ δ + λ

It is easy to show that these first-order conditions cannot hold simultaneously if r = q = θ/2.
Case 1: q(θ) > r(θ). The necessary first-order conditions are:

−λ′(θ) =
∂H

∂q
= −r2

2
q′(θ − r)

q2
+ (2θ − 1)− q − δ

q′(θ − r)
q2

−δ′(θ) =
∂H

∂r
= r

q′(θ − r)
q

−
(

r2

2
+ δ

)
q′

q

0 =
∂H

∂q′
=

(
r2

2
+ δ

)
θ − r

q
+ λ
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The unique solution to these equations is: δ(θ) = − r2(θ)
2 , λ(θ) = 0, q = 2θ − 1, r(θ) = θ2+c

2θ−1
where c is a constant of integration which will be determined later.

Substituting the values of λ and δ into (13), it is easy to check that H(q, r, λ, δ, θ) is
concave. Hence, sufficient conditions for optimality are also satisfied.

Case 2: q(θ) < r(θ). The first-order conditions are:

−λ′(θ) =
∂H

∂q
= −q′(θ − r)

2
+ (2θ − 1)− q − δ

q′(θ − r)
q2

(14)

−δ′(θ) =
∂H

∂r
= q′(θ + q/2− 2r)− δ

q′

q
(15)

0 =
∂H

∂q′
= (r − q/2)(θ − r) + δ

θ − r

q
+ λ (16)

To solve this system of the first-order conditions, combine (14) and (15) to get:

−
(

λ(θ) + δ(θ)
θ − r

q

)′
=− q′(θ − r)

2
+ 2θ − 1− q + q′(θ + q/2− 2r)

θ − r

q
− δ(θ)

q
(17)

On the other hand, differentiating (16) we get:

−
(

λ(θ) + δ(θ)
θ − r

q

)′
=− q′(θ − r)

2
+ (r − q/2) + q′(θ + q/2− 2r)

θ − r

q
(18)

Equating the right-hand sides of (17) and (18) we get:

δ = q(2θ − 1− q/2− r) (19)

Differentiating (19) we obtain:

δ′ = q′(2θ − 1− q/2− r) + q

(
2− q′/2− q′(θ − r)

q

)
= 2q + q′(θ − 1− q) (20)

Finally, equate the right-hand sides of (15) and (20) and use (19) to obtain:

q′r = 2q (21)

Thus, we have a system of differential equations consisting of (21) and ‘the law of motion’:

r′ =
q′(θ − r)

q
(22)

Before attempting to solve this system, we need at first to characterize the regions where
Cases 1 and 2 apply. This is done in the following lemma:

Lemma 8 (i) ∃θ such that Case 2 applies on [0, θ), and Case 1 applies on (θ, 1].
(ii) q(θ) > 0 ∀θ > 0.
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Proof: see the Appendix.

Let us now solve for r(θ) and q(θ) on [0, θ). Combining (21) with (22) we get:

r′ = 2
θ − r

r
= 2

θ

r
− 2 (23)

which can be rewritten as:
r′r + 2r = 2θ (24)

By lemmas 5 and 8, the appropriate initial condition for (24) is r(0) = 0. Under this initial
condition, (24) has two solutions r(θ) = (

√
3 − 1)θ and r(θ) = −(

√
3 + 1)θ. Only the first

solution applies in our case, because r(θ) must be nonnegative. It remains to show that there
are no other nonnegative solutions. This requires a proof because (0, 0) is a point of singularity
of (24).

To argue by contradiction, suppose that (24) has two non-negative solutions r1(θ) and
r2(θ). Let s(.) = r2(.)

2 . Then we can rewrite (24) as follows:

s′ = 2θ −
√

8s (25)

The solutions r1(.) and r2(.) give rise to two different solutions s1(.) and s2(.) to (25) with the
initial condition s(0) = 0. Therefore, ∃θ0 ∈ (0, 1) s.t. without loss of generality s1(θ0) > s2(θ0).

Note that s1(θ) > 0 and s2(θ) > 0 ∀θ > 0. At any point (s, θ) s.t. s > 0, θ > 0 (25)
is a regular ordinary differential equation, and its right-hand side 2θ − √

8s is continuous
and Lipschitz in s on some open neighborhood of (s, θ). Therefore, only one solution can
pass through any such point (s, θ) (see Coddington (1989), Theorem 1, p. 223), so that
s1(θ) > s2(θ) ∀θ ∈ (0, θ0]. Then,

s1(θ0)− s2(θ0) =
∫ θ0

0
s′1(θ)− s′2(θ)dθ =

∫ θ0

0

√
8s2(θ)−

√
8s1(θ)dθ < 0

This contradiction proves the uniqueness of solution to (24).
Using r(θ) = (

√
3 − 1)θ to solve (21), we obtain q = kθ

√
3+1 where k is a constant of

integration which will be determined later. Using (16) and (19) we get:
δ = kθ

√
3+1

(
(3−√3)θ − k

2θ
√

3+1 − 1
)

and λ =
√

3
(
kθ
√

3+1 + 1− 2θ
)
. Substituting these

expressions into the Hamiltonian, it is easy to check that the latter is concave. Hence, Arrow’s
sufficient conditions for optimality are satisfied.

Since q(.) and r(.) are continuous on [0, 1], and r(θ) = q(θ), we get: q(θ) = 2θ−1 = r(θ) =
(
√

3−1)θ. So, θ = 1
3−√3

. Finally, by pasting r(.) and q(.) at θ continuously we compute k and

c in the solutions for q(θ) and r(θ) in cases 2 and 1 respectively. From q(θ) = kθ
√

3+1 = 2θ−1

we obtain: k =
√

3
√

3
(
√

3− 1)
√

3+1, and from r(θ) = q(θ) we get c = −1/6. Q.E.D.

4 Non-Binary Costs and Multiple Messages.

Up to now, we have considered situations in which an agent’s cost of sending a particular
message could take only two possible values: zero (a feasible message) or infinity (an infeasible
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message). In this section, we consider more general cost structures. However, in contrast to
the environments studied in the previous section, we assume that there are no costless non-
truthful messages.

To simplify the model, we impose a restriction on the admissible communication set C
defined above as a set of statements about the true state of the world, or messages, that can
be made by an agent and understood by the principal. We assume that C = Θ i.e., the only
messages that are allowed in the mechanism are the agent’s statements about her privately
known preference parameter θ. We assume that an agent with true preference parameter
θ who sends message θ̂ incurs cost c(θ̂, θ) which has the following properties. Stating the
truth is costless i.e. c(θ, θ) = 0, but sending messages misrepresenting the truth is costly i.e.,
c(θ̂, θ) > 0 ∀θ̂ 6= θ.

This framework is similar to the ones studied by Lacker and Weinberg (1989) and Maggi
and Rodriguez-Clare (1995). These authors assume, albeit implicitly, that an agent can incur
communication cost at most once. This view is consistent with an interpretation that the
agent incurs a physical cost, such as hiding the crop, to distort the signal received by the
principal.

However, an alternative scenario under which an agent incurs communication cost more
than once is also plausible. An agent may have to support each message with a different
piece of evidence. Then each nontruthful message would require a costly distortion of the
corresponding piece of evidence.

Similarly, an agent may blush or suffer an emotional distress each time she has to tell a
lie. Then, as we have discussed in the previous section, the principal may require the agent
to report the same information several times, sometimes in different forms, or hire several
deputies to request the same information from the agent. For example, a person normally has
to report her income on tax forms, college financial aid forms, loan and mortgage applications.

So, in contrast to Lacker and Weinberg (1989) and Maggi and Rodriguez-Clare (1995),
we consider an environment in which an agent incurs a separate communication cost each
time she sends a message, irrespective of the other messages that she also sends and, thus,
irrespective of whether the other messages are different or identical. Formally, this implies
that the payoff structure is as follows. If an agent with utility parameter θ sends n messages
θ̂1, ..., θ̂n and the mechanism selects allocation x ∈ X, then the agent obtains the following
payoff:

u(x, θ) +
n∑

i=1

c(θ̂i, θ) (26)

We assume that the set X is compact, u(x, θ) is continuous in x, and there exists a ‘worst’
outcome x which minimizes u(., θ) ∀θ6.

Our first result demonstrates that the absence of costless nontruthful messages has sur-
prisingly strong implication for the set of implementable allocations.

Theorem 4 Suppose that the space of utility parameters Θ is finite. Then there exists n < ∞
such that if the principal can offer a mechanism in which the agent has to report her utility

6In a more general model, communication costs may also depend upon a separate parameter t, so that agents
with the same preference parameter θ but different t may have different communication costs.
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parameter θ at least n times, then every allocation profile x : Θ → X is implementable, at zero
communication cost.

Proof: Let ε = minθ̂ 6=θ c(θ̂, θ), H = maxθ maxx′ 6=x |u(x′, θ)− u(x, θ)|. Note that the continu-
ity of u(x, θ) in x, the compactness of X, and the finiteness of Θ imply that H is finite. Let
n be the smallest integer that is no less than H

ε . Fix an allocation profile x(θ), and consider
a mechanism in which the agent is asked to report her true utility parameter n times. Given
any vector of announcements (θ̂1, ..., θ̂n), the mechanism assigns allocation g(θ̂1, ..., θ̂n) s.t.:

g(θ̂1, ..., θ̂n) =
{

x, if ∃j 6= i such that θ̂i 6= θ̂j

x(θ̂1), otherwise.
(27)

Clearly, the agent cannot improve her payoff by sending a vector of non-coincident mes-
sages. Furthermore, if type θ reports a vector containing θ̂ 6= θ as each element, her payoff is
u(x(θ̂), θ)− n× c(θ̂, θ). But note that

u(x(θ̂), θ)− n× c(θ̂, θ) ≤ u(x(θ̂), θ)− nε ≤ u(x(θ), θ),

where the last inequality holds by the choice of n. We conclude that any allocation profile
x : Θ → X is implementable. Furthermore, since each agent type reports the truth n times,
no communication costs are incurred. Q.E.D.

No matter how small the cost of sending a nontruthful message is, as long as this cost re-
mains bounded away from zero, repeated sending of such messages makes nontruthful reporting
very costly. Then by requiring the agent to send a sufficiently large number of messages, the
mechanism makes the agent’s cost of imitating any other type prohibitively large, regardless
of the allocation to be implemented. Thus, theorem 4 implies that when the principal has
the ability to elicit multiple messages, the only barrier to implementation is the existence of
costless nontruthful messages.

Finiteness of the utility parameter space Θ played a crucial role in the above argument.
Suppose now that space Θ has infinitely many elements. By requiring the agent to send a
sufficiently large number of messages, it is easy to guarantee that nonlocal incentive constraints
are satisfied i.e. the agent of type θ is not willing to imitate any other type that is sufficiently
different. However, local incentive constraints preventing the agent from imitating agents
whose utility parameters are ‘close’ to hers, could pose problems if the number of messages
has to remain finite. Yet, our next theorem shows that all allocation profiles that satisfy a
mild regularity condition are implementable.

We will henceforth assume that Θ is a compact subset of some finite-dimensional Euclidean
space, and that c : Θ×Θ → R+ is continuous. We also make the following three assumptions:

Assumption 1 There exists L < ∞ s.t. ‖x(θ′)− x(θ)‖ ≤ L‖θ′ − θ‖, ∀θ′, θ ∈ Θ.

Assumption 2 There exists c > 0 s.t. c(θ′, θ) ≥ c‖θ′ − θ‖, ∀θ′, θ ∈ Θ.

Assumption 3 There exists K < ∞ s.t. |u(x′, θ)− u(x, θ)| ≤ K‖x′ − x‖, ∀θ ∈ Θ.
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Assumption 1 requires the allocation to be Lipschitz continuous with Lipschitz constant
L. Assumption 2 puts a lower bound on the cost of lying. Finally, Assumption 3 strengthens
the continuity requirement on the agent’s utility function to uniform continuity in x. Since
X ×Θ is compact, Assumption 3 will hold if u(., .) is C1. Under these conditions, we have:

Theorem 5 Suppose that Assumptions 2 and 3 hold. There exists n < ∞ such that if the
principal can offer a mechanism in which the agent has to report her utility parameter at least
n times, then any allocation profile x(θ) satisfying Assumption 1 is implementable with zero
communication cost.

Proof: Fix allocation x(θ) that satisfies Assumption 1. Let n be the smallest integer
that is no less than KL/c. Consider the same mechanism as in Theorem 4. This mecha-
nism implements allocation profile x(θ) if the following incentive constraint is satisfied ∀θ, θ̂:
u(x(θ̂), θ)− nc(θ̂, θ) ≤ u(x(θ), θ). But this inequality holds, since∣∣∣u(x(θ̂), θ)− u(x(θ), θ)

∣∣∣ ≤ KL‖θ̂ − θ‖ ≤ nc‖θ̂ − θ‖ ≤ c(θ̂, θ). Q.E.D.

Intuitively, local incentive constraints hold because the marginal benefit of lying is finite,
but the marginal cost of announcing the utility parameter nontruthfully is bounded from
below by c. Then requesting the agent to report her utility parameter sufficiently many times
ensures the optimality of truth-telling.

The reasoning we just gave suggests that the set of implementable allocation profiles may
be more restricted when the marginal cost of announcing utility parameter nontruthfully is
zero at the true type, i.e. ∂c

∂θ̂
(θ̂, θ)|θ̂=θ = 0. Indeed, implementation in this case will generally

require that the agent send nontruthful messages. This raises the issue of constructing opti-
mal mechanisms, especially their communication stages, and leaves open the possibility that
communication costs may become substantial.

To gain insight into this problem, we will specialize our model to the case where the type
space is one-dimensional and set Θ = [θ̄, θ]. We partition the outcome x into a production
assignment q ∈ Q, where Q is a compact subset of Rk−1, and a transfer p. Thus, x = (q, p).
For simplicity, we also assume that the agent’s utility function is quasilinear in transfer, i.e.:

u(x, θ) = v(q, θ) + p

We restrict attention to communication cost functions that depend only on the distance be-
tween the true and the announced utility parameters:

c(θ̂, θ) = C(|θ̂ − θ|)

Finally, we make the following assumptions on C(·) and v(·, ·):
Assumption 4 C(·) is twice continuously differentiable, with C(0) = C ′(0) = 0,
and 0 < ω ≤ C ′′(x) ≤ ω̄ < ∞.

Assumption 5 v(q, θ) is twice continuously differentiable.

We then have the following “approximate implementation” theorem:

25



Theorem 6 For every continuously differentiable allocation profile {q(θ), p(θ)} and every ε >
0, there exist n < ∞ and transfer rule pε(θ) satisfying |pε(θ)− p(θ)| < ε ∀θ such that the
allocation profile {q(θ), pε(θ)} is implementable via a mechanism in which the agent sends n
messages. The total communication cost incurred by an agent in this mechanism does not
exceed ε.

Proof: see the Appendix.

In the mechanism that implements allocation profile {q(θ), pε(θ)} an agent with utility
parameter θ makes n1 truthful and n2 nontruthful announcements i.e., reports θ n1 times,
and also reports s̃(θ) 6= θ n2 times. Then the first-order condition necessary for local incentive
compatibility is:

dpε(θ)
dθ

= −∇qv(q(θ), θ)q′(θ) + n2sgn(s̃(θ)− θ)C ′(|s̃(θ)− θ|)s̃′(θ) (28)

By choosing n2 and s̃(θ) appropriately we can ensure that (28) holds for arbitrary (q(θ), pε(θ)).
Because C ′(0) = 0, truthful announcements do not have any effect on (28). So, in the

absence of costly messages the second term in (28) would be zero, in which case (28) would
impose a restriction on the set of implementable allocations in the form of a link between q(θ)
and pε(θ). Costly messages eliminate the need for any such link.

Further, exploiting the convexity of C(.) we can choose n2 sufficiently large that (28) holds,
yet the agent’s cost of communication n2C(|s̃(θ)− θ|) is arbitrarily small.

Finally, a sufficiently large number n1 of costless truthful messages guarantees that the
agent’s payoff is quasi-concave in her reported utility parameter θ̂ (see the proof for details).
Thus, truthful messages allow the second-order conditions to be satisfied and ensure global in-
centive compatibility without requiring any restrictions on the set of implementable allocation
profiles.

Let us now compare theorem 6 with the results in Maggi and Rodriguez-Clare (1995)
(which will be referred to as MR below) who study a similar model under the restriction that
the agent makes only one announcement regarding her type θ. Although MR focus on finding
the optimal (profit-maximizing) mechanism, and we are concerned with implementablility,
comparing the necessary and sufficient conditions for implementation is instructive, since it
allows to appreciate the full effect of communication involving multiple messages.

The necessary first-order condition for implementation in MR is given by condition (N)
in Lemma 1 (p. 679). It is equivalent to (28) if we put n2 = 1 and s̃(θ) ≥ θ. Thus,
costly communication in MR also allows to weaken the link between production assignment
q(θ) and the corresponding transfer, and hence to implement a larger set of social choice
functions. But the degree to which this link is weakened is limited by the magnitude of the
incurred communication costs, which can be quite large when n2 = 1. In contrast, when n2

is unrestricted, as in our model, co-dependence between q(θ) and p(θ) is eliminated at a very
small cost.

Finally, consider the second-order conditions for implementation. To satisfy them, MR
have to impose the following restrictions: q′(θ) ≥ 0 and s̃′(θ) ≥ 0. (p. 679). In contrast,
as explained above, in our model second-order conditions hold because the agent also has
to make a sufficiently large number of truthful announcements of her utility parameter θ.
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Consequently, we are able to implement any continuously differentiable allocation profile at a
small (communication) cost.

The results of this section have a number interesting implications for screening and signal-
ing. In order to exhibit these applications, consider a standard job-market screening problem
i.e., an employer hiring an employee of unknown ability. It many real-world situations employ-
ers ask job-candidates to undergo through a number of tests, such as interviews. Such tests,
or interviews, can be regarded as multiple signals or messages send by the employee. Applying
the results of this section, we conclude that the problem of asymmetric information regarding
the employee’s ability can be overcome, i.e. the employer can learn the employee’s ability at
almost zero cost and with small efficiency losses, if the tests/interviews that the job-candidate
goes through can be designed to have the following properties: (i) An employee’s performance
on one test is independent, on her performance on the other tests (This condition can be
relaxed. The results remain valid if the dependence is not too strong). (ii) Each test identifies
the employee’s ability accurately, if the employee does not attempt to manipulate the results
of the test by expending effort. (iii) The employee incurs zero (very small) cost when she does
not attempt to misrepresent her type, and the cost of effort is positive and increasing in the
magnitude of desired misrepresentation on a test.

Thus, our analysis allows to explain why in many situation the employers do not offer menus
of contracts to the employees in order to screen them according to their ability, as suggested
by the mechanism design approach. Instead, the employers carefully design the interviewing
process. Indeed, the interviewing process in many professional job-markets appears to be
consistent with the idea of requesting multiple messages/signals from the agent, with each
signal being somewhat different from the others. For example, in the context of a departmental
visit on the academic job-market a prospective candidate meets with faculty members working
in different fields. It is conceivable that each conversation provides an independent signal of the
candidate’a ability, because different faculty members, especially if they work in different fields,
assess the candidate from different perspectives. Our results imply that if a job candidate has
to go through sufficiently many such interviews, or other tests, then even if the candidate is
able and willing to exert effort to misrepresent his/her ability, doing so will be too costly. So,
a Department will have a very accurate estimate of the candidate’s ability. Then it would not
be necessary to do further on-the-job screening by offering a menu of possible contracts.

In some environments where signals are sent in a sequence it is likely that the agent’s cost
of each particular signal is affected by the previous ones. For example, suppose that a signal is
an agent’s performance on a specific test (job interview), and that the agent can misrepresent
her ability by exerting costly effort (studying). Then the amount of effort that an agent with
ability θ needs to exert in the n-th test to perform at a level corresponding to ability θ′n could
depend on the efforts that she took to prepare for the previous tests. Thus, the cost of the
n-th signal is given by cn(θ, θ′1, ..., θ

′
n).

It is easy to show that our results still hold if the effect of the true ability θ on the cost
(effort) required to send signal θ′n does not go to zero “too quickly’ in n. For example, they
remain valid if cn(θ, θ′1, ..., θ

′
n) ≥ c(θ,θ′n)

n where c(., .) is some function satisfying the original
conditions.

27



5 Conclusions

We have demonstrated that in environments with communication costs the ability of the
principal to offer mechanisms in which an agent sends several messages significantly expands
the set of implementable outcomes.

The results of the paper have a number of interesting implications. In particular, we have
shown that an individual’s communication abilities can play an important role in determining
her payoff. Further, we have also shown that it may not be optimal to punish individuals
who make conflicting statements and, thus, can be easily accused of lying. By not punishing
individuals who make such conflicting statements the mechanism prevents them from imitating
others, which enhances the overall social efficiency of the outcome. We intend to explore this
point further in our research.

6 Appendix

Proof of lemma 1:
(i) First note that individual rationality constraints (4) are binding for all θ in the optimal

mechanism. Suppose that g(θ) > θ for some θ ∈ [0, 1]. Then the value of the integrand in (5)
can be increased by setting g(θ) = θ and reducing the transfer tτ (θ) appropriately to make
(4) binding. It is easy to see that incentive constraints (2) still hold for (θ′, θ) ∀θ′ ∈ [0, 1].

Suppose that g(θ2) > g(θ1) for some θ2 < θ1. Then (θ − θ2)g(θ2) > (θ − θ1)g(θ1) ∀θ > θ2.
Therefore, incentive constraints (2) are slack for all θ > θ1. In this case, it is easy to see
from (5) that optimality implies that g(θ1) = θ1. But then g(θ2) > θ2 which contradicts the
property that g(θ) ≤ θ.

(ii) The proof that q(θ) that satisfies incentive constraints (1) must be non-decreasing is
standard and is therefore omitted.

Suppose that q(θ) > 1 for some θ ∈ [0, 1]. Let θ̂ = inf{θ|q(θ) > 1}. Since q(.) is non-
decreasing, q(θ) > 1 ∀θ ∈ (θ̂, 1]. Consider modified quantity-transfer schedules (q̃(θ), t̃s(θ))
s.t. q̃(θ) = q(θ), t̃s(θ) = ts(θ) for θ ∈ [0, θ̂), and q̃(θ) = 1, t̃s(θ) = θ̂(1 − q(θ̂)) + ts(θ̂) for
θ ∈ [θ̂, 1]. It is easy to see that (q̃(θ), t̃s(θ)) satisfies all incentive constraints. The quantity
allocation q̃(θ) is more efficient. Furthermore, it is easy to show that a ‘strategic’ agent with
valuation above θ̂ now earns a lower payoff under the modified schedule. Therefore, by offering
this schedule the principal obtains higher profits.

Since q(θ) is non-decreasing and bounded, it is Riemann integrable by Theorem 6.9, p.126
in Rudin (1976) and a.e. differentiable by Theorem 3, p.100 in Royden (1987).

By Theorem 4.30, p.96 in Rudin (1976) q(θ) has at most countably many points of discon-
tinuity. Right-hand and left-hand limits exist at all discontinuity points of q(θ) by Theorem
4.29, p.95 in Rudin (1976).

Suppose that q(1) = µ < 1. Since q(θ) is nondecreasing, q(θ) ≤ µ ∀θ ∈ [0, 1). Inspecting
(5) it is easy to see that the principal gets a higher payoff by modifying the mechanism and
setting q(θ) = 1+µ

2 , ts(θ) = ts(3+µ
4 ) + 3+µ

4 (1+µ
2 − q(3+µ

4 )) for θ ∈ [3+µ
4 , 1].

(iii) The family of incentive constraints (1) implies that U(θ) ≥ U(θ′) + (θ − θ′)q(θ′) and
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U(θ′) ≥ U(θ) + (θ′ − θ)q(θ) ∀θ, θ′. Combining these two inequalities we have:

q(θ)(θ − θ′) ≥ U(θ)− U(θ′) ≥ q(θ′)(θ − θ′).

Since q(θ) is bounded and Riemann integrable, the above implies that U(θ) is uniformly and
absolutely continuous. Therefore, by Theorem 14, p.110 in Royden (1987),
U(θ)− U(θ′) =

∫ θ
θ′ q(s)ds and U ′(θ) = q(θ) a.e. Q.E.D.

Proof of lemma 2: Suppose that optimal quantity schedule q(θ) is discontinuous at x ∈ (0, 1).
Let q(x−) and q(x+) be left-hand and right-hand limits of q(θ) at x respectively. By lemma
1, q(x−) and q(x+) exist. Thus, we have q(x−) = q(x+)− 2δ for some δ > 0.

We will show that the principal can increase her expected profit by offering a mechanism
with modified quantity schedule q̂(θ) s.t. for appropriately chosen ε > 0: (i) q̂(θ) = q(θ) for
θ ∈ (0, x − ε) ∪ (x + ε, 1], (ii) q̂(θ) = q(θ) + δ for θ ∈ [x − ε, x), (ii) q̂(x) = q(x−) + δ, (iii)
q̂(θ) = q(θ)− δ for θ ∈ (x, x + ε].

After this modification, the agent earns informational rent Û(θ) = U(0) +
∫ θ
0 q̂(s)ds. It is

easy to see that Û(θ) ≥ U(θ). Therefore, all incentive constraints in (8) still hold.
¿From (6), the change in the firm’s expected profit after this modification is equal to:
∫ x

x−ε
(2θ − 1)(q(θ) + δ)− (q(θ) + δ)2

2
dθ +

∫ x+ε

x
(2θ − 1)(q(θ)− δ)− (q(θ)− δ)2

2
dθ

−
∫ x

x−ε
(2θ − 1)q(θ)− q(θ)2

2
dθ −

∫ x+ε

x
(2θ − 1)q(θ)− q(θ)2

2
dθ

= δ

(∫ x

x−ε
2θdθ −

∫ x+ε

x
2θdθ

)
− δ2ε + δ

(∫ x+ε

x
q(θ)dθ −

∫ x

x−ε
q(θ)dθ

)
≥ −2δε2 + δ2ε

The last inequality holds because q(θ2) − q(θ1) ≥ 2δ when θ1 < x < θ2. If ε < δ
2 , then

−2δε2 + δ2ε > 0, and hence the principal gets a higher expected payoff under the modified
quantity schedule q̂(θ). Thus, a discontinuous quantity schedule cannot be optimal. Q.E.D.

Proof of lemma 3:
Suppose that in the optimal mechanism U(0) = u > 0. Consider set Z ⊂ Θ s.t. θ ∈ Z iff

u +
∫ θ

0
q(x)dx = sup

θ′
(θ − θ′)g(θ′) (29)

Set Z is non-empty, because otherwise the principal could reduce U(0) and hence increase
her expected profits without violating any of the incentive constraints in (8). Let θ̂ be the
minimal element of Z. θ̂ exists because both the left-hand side and the right-hand side of (29)
are continuous in θ.

Define U τ (θ) ≡ supθ′(θ − θ′)g(θ′). Clearly, U τ (θ) is continuous and strictly increasing in
θ. Let λ ∈ (0, 1). Then:

(λθ1 + (1− λ)θ2 − θ′)g(θ′) = λ(θ1 − θ′)g(θ′) + (1− λ)(θ2 − θ′)g(θ′) ≤ λU τ (θ1) + (1− λ)U τ (θ2)

Therefore, U τ (λθ1 + (1− λ)θ2) ≤ λU τ (θ1) + (1− λ)U τ (θ2) i.e., U τ (θ) is convex.
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Since g(θ) ≤ 1, we have |U τ (θ1)− U τ (θ2)| ≤ |θ1 − θ2| i.e., U τ (θ) is absolutely continuous.
Therefore it possesses a.e. a nonnegative bounded derivative ṽ(θ) s.t. U τ (θ) =

∫ θ
0 ṽ(x)dx.

Obviously, ṽ(θ) ≤ 1. Since U τ (θ) is convex, ṽ(θ) is non-decreasing. Therefore, at all θ the
left-hand and the right-hand limits of ṽ(θ) exist and are finite.

Let v(θ) be an extension of ṽ(θ) to all of [0, 1] defined in the following way: v(θ) = ṽ(θ) if
ṽ(.) is defined at θ, and v(θ) is equal to the left-hand limit of ṽ(.) if ṽ(.) is not defined at θ.
Then U τ (θ) =

∫ θ
0 v(x)dx, v(θ) is non-decreasing and does not exceed θ anywhere.

Note that q(θ̂) ≥ v(θ̂). Otherwise, there exists θ2 > θ̂ s.t. u +
∫ θ2

0 q(x)dx < U τ (θ2) which
is impossible because all incentive constraints in (8) hold by assumption. On the other hand,
the left-hand limit of v(θ) at θ̂ denoted by v(θ̂−) is such that v(θ̂−) ≥ q(θ̂) because otherwise
for some θ3 < θ̂, u+

∫ θ3

0 q(x)dx < U τ (θ3) which is impossible because all incentive constraints
in (8) hold by assumption. Therefore, v(θ̂−) = q(θ̂).

Let us construct a modified quantity schedule q̂(θ). If v(θ) ≥ q(θ) a.e. on [0, θ̂), then let
q̂(θ) = v(θ) on [0, θ̂) and q̂(θ) = q(θ) on [θ̂, 1]. Then, q̂(θ) is non-decreasing because both q(θ)
and v(θ) are non-decreasing and v(θ̂−) = q(θ̂). Observe that∫ θ
0 q̂(x)− v(x)dx =

∫ θ̂
0 v(x)− q(x)dx− ∫ θ

0 v(x)− q(x)dx ≥ 0 ∀θ ∈ [0, 1].
Now suppose that v(θ) < q(θ) on a subset of [0, θ̂] with a positive measure. Let θ0 < θ̂ be

the minimal θ s.t.
∫ θ
0 max{v(x), q(x)} − q(x)dx = u. Such θ0 exists by the continuity of the

integral in its upper limit.
If q(θ0) ≥ v(θ0−), then let q̂(θ) = max{v(θ), q(θ)} on [0, θ0) and q̂(θ) = q(θ) on [θ0, 1].

q̂(.) is non-decreasing because both q(.) and v(.) are non-decreasing and v(θ0−) ≤ q(θ0).
Obviously,

∫ θ
0 q̂(x)− v(x)dx ≥ 0 ∀θ ∈ [0, 1].

If q(θ0) < v(θ0−), then ∃θ1, θ2 s.t. θ1 < θ0 < θ2 ≤ θ̂, q(θ1) ≥ v(θ1−), q(θ2) = v(θ2−), and
q(θ) < v(θ) ∀θ ∈ (θ1, θ2). Note that

∫ θ1

0 max{v(x), q(x)} − q(x)dx < u, while
u <

∫ θ2

0 max{v(x), q(x)} − q(x)dx. Therefore, ∃α ∈ (0, 1) s.t.

∫ θ1

0
max{v(x), q(x)} − q(x)dx +

∫ θ2

θ1

(αv(x) + (1− α)q(x))− q(x)dx = u (30)

Define q̂(θ) = max{v(θ), q(θ)} on [0, θ1), q̂(θ1) = q(θ1), q̂(θ) = αv(θ) + (1− α)q(θ) on (θ1, θ2),
q̂(θ) = q(θ) on [θ2, 1]. Then, q̂(.) is non-decreasing because both q(.) and v(.) are non-
decreasing, q(θ1) ≥ v(θ1−), v(θ) > q(θ) on (θ1, θ2), q(θ2) = v(θ2−). Let us show that∫ θ
0 q̂(x) − v(x)dx ≥ 0 ∀θ ∈ [0, 1]. This is obvious if θ ∈ [0, θ1] ∪ [θ2, 1]. Now fix an arbitrary

θ ∈ (θ1, θ2). Suppose that
∫ θ
0 q̂(x) − v(x)dx < 0. Then, since q̂(x) ≤ v(x) on (θ1, θ2) we

have
∫ θ2

0 q̂(x) − v(x)dx < 0 . But this contradicts the fact that
∫ θ2

0 q̂(x) − q(x)dx = u ≥∫ θ2

0 v(x)− q(x)dx.
Suppose that the principal offers schedules q̂(.), g(.) and sets U(0) = 0. In this case (8)

is satisfied ∀θ, θ′ because, as we have shown
∫ θ
0 q̂(x) − v(x)dx ≥ 0 ∀θ. Then, the principal’s
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expected profits change by:

u +
∫ 1

0
(2θ − 1)(q̂(θ)− q(θ))− q̂2(θ)

2
+

q2(θ)
2

dθ =
∫ 1

0
2θ(q̂(θ)− q(θ))− (q̂(θ)− q(θ))

(
q̂(θ) + q(θ)

2

)
dθ > 0

The equality follows from the fact that
∫ 1
0 q̂(x)− q(x)dx = u. The inequality follows because

q(θ) ≤ θ and q̂(θ) ≤ max{v(θ), q(θ)} ≤ θ. Q.E.D.

Proof of lemma 4:
Suppose that ∃θ s.t. q(θ) = 0 and g(θ) > 0. Note that tτ (θ) = θg(θ). By continuity of

q(θ), ∃θ′ > θ s.t. q(θ′) < g(θ). Since q(θ) is nondecreasing, U(θ′) =
∫ θ′
0 q(s)ds < (θ′ − θ)g(θ)

i.e., ICT (θ′, θ) in (8) fails.
Next, suppose that g(θ) = 0 but q(θ) > 0. Then, without violating any incentive con-

straints in (8), the principal can increase its profits by setting g(θ) = min{θ, q(θ)} and
tτ (θ) = g(θ)θ. Q.E.D.

Proof of lemma 5:
(i) Since q(θ) is nondecreasing, U(θ) =

∫ θ
0 q(s)ds ≤ q(θ)θ, and so r(θ) ≥ 0.

Let θ2 > θ1 and q(θ1) > 0. Then

r(θ2)− r(θ1) = θ2 − θ1 −
q(θ1)

∫ θ2

0 q(s)ds− q(θ2)
∫ θ1

0 q(s)ds

q(θ2)q(θ1)

= θ2 − θ1 −
∫ θ2

θ1
q(s)ds

q(θ2)
+

(q(θ2)− q(θ1))
∫ θ1

0 q(s)ds

q(θ2)q(θ1)
≥ (q(θ2)− q(θ1))

∫ θ1

0 q(s)ds

q(θ2)q(θ1)
≥ 0

It is easy to see that both inequalities above are strict iff q(θ2) > q(θ1).
Since q(θ) is continuous, r(θ) is continuous ∀θ s.t. q(θ) > 0. Now consider θ̂ s.t. q(θ̂) = 0.

By definition, r(θ̂) = θ̂. If ∃θ′′ > θ̂ s.t. q(θ′′) = 0, then by definition r(θ) = θ on [0, θ′′]. Now
suppose that θ̂ = max{θ|q(θ) = 0}. Since q(θ) is nondecreasing and so q(θ′) = 0 ∀θ′ ≤ θ̂, we
have U(θ)

q(θ) ≤ θ − θ̂ ∀θ > θ̂. This implies that limθ→θ̂+0 r(θ) = θ̂. Thus r(.) is continuous at θ̂.
Similarly, we can show that r(0) = 0.

(ii) Suppose that ICT (θ, θ′) in (8) hold ∀θ, θ′ ∈ [0, 1].
If U(θ) = 0, then q(θ) = 0 because otherwise q(.) cannot be continuous, and r(θ) = θ. To

show that g(θ) = 0, suppose otherwise. Then by continuity of q(.), ∃θ′ > θ s.t. q(θ′) < g(θ).
Since q(θ) is nondecreasing, U(θ′) =

∫ θ′
0 q(s)ds < (θ′ − θ)g(θ) i.e. ICT (θ′, θ) in (8) does not

hold. Contradiction.
If U(θ) > 0, then by definition of r(θ), U(θ) = (θ−r(θ))q(θ). Combining this with incentive

constraint ICT (θ, r(θ)): U(θ) ≥ (θ − r(θ))g(r(θ)), we conclude that q(θ) ≥ g(r(θ)).
Now suppose that q(θ) ≥ g(r(θ)) ∀θ ∈ [0, 1]. Fix any pair (θ, θ̂). Since r(θ) is continuous,

nondecreasing and r(0) = 0, either θ̂ = r(θ̃) for some θ̃ ∈ [0, 1] or θ̂ > r(1).
Suppose that θ̂ = r(θ̃) for some θ̃ ∈ [0, 1]. Note that θ̃ need not be unique. However, if

θ̂ = r(θ̃1) = r(θ̃2), then by the argument given in part (i) q(θ̃1) = q(θ̃2). So pick any such θ̃.
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If θ ≥ θ̃, then q(θ) ≥ q(θ̃), and we have

U(θ) = U(θ̃) +
∫ θ

θ̃
q(s)ds ≥ (θ̃ − θ̂)q(θ̃) + (θ − θ̃)q(θ̃) ≥ (θ − θ̂)g(θ̂)

where the first inequality holds because q(.) is nondecreasing, while the second inequality holds
because θ̂ = r(θ̃). Thus, ICT (θ, θ̂) holds.

If θ < θ̃, then q(θ) ≤ q(θ̃). Then ICT (θ, θ̂) holds because we have:

U(θ) = U(θ̃)−
∫ θ̃

θ
q(s)ds ≥ (θ̃ − θ̂))q(θ̃)− (θ̃ − θ)q(θ̃) ≥ (θ − θ̂)g(θ̂)

Finally, suppose that θ̂ > r(1). Since g(θ̂) ≤ q(1), we have:

U(θ) = U(1)−
∫ 1

θ
q(s)ds ≥ (1− r(1))q(1)− (1− θ)q(1) ≥ (θ − r(1))q(1) > (θ − θ̂)g(θ̂)

Thus, ICT (θ, θ̂) also holds in this case. Q.E.D.

Proof of lemma 7:
If q∗(θ) solves maximization problem (10) on the domain C1

p([0, 1]), but not on the domain
C([0, 1]), then there exists function q̂(θ) ∈ C([0, 1]) \ C1

p([0, 1]) s.t. the objective function in
(10) takes a strictly higher value under q̂(θ) than under q∗(θ).

By the Stone-Weierstrass theorem, the space of continuously differentiable functions, which
is a subspace of C1

p([0, 1]), is dense in C([0, 1]). Therefore, C1
p([0, 1]) is dense in C([0, 1]), and

there exists a sequence q̃n(θ) ∈ C1
p([0, 1]) converging to q̂(θ) in the sup−norm. The objective

function (10) is continuous in the sup-norm. Therefore, ∃N > 0 s.t. ∀n ≥ N the objective
function in (10) takes a strictly higher value under q̃n(θ) than under q∗(θ). This contradicts
the assumption that q∗(θ) is a solution on C1

p([0, 1]). Q.E.D.

Proof of lemma 8:
First of all, let us establish the following property of the solution: for any interval where

Case 2 applies (r(θ) > q(θ)) ∃k1 > 0 s.t.

q(θ) ≥ k1

(
θ(
√

3 + 1)
)√3+1

(31)

To demonstrate this, combine (21) with (22) to get:

r(
√

3 + 1 + r′) =
2√

3 + 1
(θ(
√

3 + 1) + r)

Using (21) in the above equation, we get:

q′

q
=

(
√

3 + 1)(
√

3 + 1 + r′)
θ(
√

3 + 1) + r
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The solution to this equation is q = k1

(
θ(
√

3 + 1) + r
)√3+1

. The constant of integration k1

must be strictly positive, because we are in the region where q(θ) > r(θ) ≥ 0, so (31) follows.
Further, note that it is not optimal to set q(θ) = 0 ∀θ ∈ [0, 1]. For suppose otherwise.

Then the value of the problem in (10). However, it can be made strictly positive by setting
q(θ) = g(θ) = 1/2 ∀θ ∈ [1/2, 1].

Since q(.) is nondecreasing and continuous, either q(θ) > 0 ∀θ ∈ (0, 1] or ∃θ ∈ (0, 1) s.t.
q(θ) > 0 ∀θ > θ and q(θ) = 0 ∀θ ≤ θ. Suppose that such θ > 0 exists. Since r(θ) is continuous
and r(θ) = θ, ∃ζ > 0 s.t. r(θ) > q(θ) for θ ∈ [θ, θ + ζ]. So Case 2 applies on [θ, θ + ζ).
However, (31) contradicts the fact that q(θ) = 0. Thus, q(θ) > 0 ∀θ ∈ (0, 1].

Since 2θ − 1 < 0 for θ < 1/2, ∃θ2 > 1/2 s.t. Case 2 (r(θ) > q(θ)) applies on [0, θ2).
Let θ = inf{θ : r(θ) < q(θ)}. We will show that θ < 1. Since q(θ) > 0 ∀θ ∈ (0, 1], U(1/2) >

0. By lemma 1, limθ→1 q(θ) = 1. Therefore, r(θ) ≡ θ − U(θ)
q(θ) ≤ θ − U(θ) < 1− U(1/2) < q(θ)

when θ is close to 1.
Finally let us establish that q(θ) > r(θ) ∀θ ∈ (θ, 1] i.e., the solution cannot switch back to

Case 2 again. By definition of θ, q(θ) = r(θ) and q(θ) > r(θ) for θ ∈ (θ, θ + ε) for some ε > 0
(remember that there are no intervals on which r(.) = q(.)). Therefore, q′+(θ) ≥ r′+(θ) (where
the subscript + denotes the derivative from the right). This is equivalent to θ ≤ q(θ) + r(θ)
because r′ = q′(θ−r)

q .
On (θ, θ + ε) q′(θ) = 2 since we are in Case 1. Also r′(θ) ≥ 0. Combining this with

θ ≤ q(θ)+r(θ), we conclude that θ < q(θ)+r(θ) and hence q′(θ) > r′(θ) ∀θ ∈ (θ, θ+ ε). Thus,
q(θ) > r(θ) ∀θ ∈ (θ, 1]. Q.E.D.

Proof of theorem 6:
Fix a continuously differentiable allocation profile {q(θ), p(θ)} and some ε > 0. Let

U(θ) = v(q(θ), θ) + p(θ). By assumption U(·) is a C1 function. Thus there exists U ε(·) ∈ C2

s.t. ∀θ |U ε(θ)− U(θ)| < ε/2.
Let us define mechanism G̃n1,n2(.) as follows. Fix some integers n1, n2, constant p, and

functions s̃(.) : Θ 7→ Θ and p̃(.) : Θ 7→ R. Let n = n1 + n2 and define
S̃n1,n2(θ) = (s1(θ), ..., sn(θ)) to be the following vector:

s1(θ) = s2(θ) = ... = sn1(θ) = θ and sn1+1(θ) = ... = sn(θ) = s̃(θ)

Then mechanism G̃n1,n2(.) maps messages S sent by the agent into outcomes according to the
following outcome function g(.):

g(S) =
{

(q(θ), p̃(θ)), if S = S̃n1,n2(θ)
(0, p), if S 6= S̃n1,n2(θ) ∀θ

We will construct G̃n1,n2(.) to implement an allocation profile that satisfies the conditions
of the theorem. First, define s̃(θ) as the unique solution to:

n2sgn(s̃(θ)− θ)C ′(|s̃(θ)− θ|) =
dU ε(θ)

dθ
− ∂v

∂θ
(q(θ), θ) (32)

where sgn stands for the sign operator. Thus if dUε(θ)
dθ − ∂v

∂θ (q(θ), θ) ≥ (≤)0, then s̃(θ) ≥ (≤)θ.
Assumption 4 guarantees that there exists a unique s̃(θ) satisfying (32).
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When an agent with utility parameter θ uses strategy S̃n1,n2(θ), she incurs communication
costs n2C(|s̃(θ) − θ|). Let us select n2 so that n2C(|s̃(θ) − θ|) < ε/2. By convexity of C(·)
and (32), we have:

n2C(|s̃(θ)− θ|) ≤ n2C
′(|s̃(θ)− θ|)|s̃(θ)− θ| =

(
dU ε(θ)

dθ
− ∂v

∂θ
(q(θ), θ)

)
|s̃(θ)− θ| (33)

Let E = maxθ∈Θ |dUε(θ)
dθ − ∂v

∂θ (q(θ), θ)|. Since U ε(.) and v(., .) are C2(.) functions, E < ∞.
Select n2 ≥ E

C′(ε/2E) . Then using (32) we have: E ≥ n2C
′(|s̃(θ)− θ|) ≥ E

C′(ε/2E)C
′(|s̃(θ)− θ|).

This implies that |s̃(θ)− θ| ≤ ε
2E . Hence, by (33) n2C(|s̃(θ)− θ|) ≤ E|s̃(θ)− θ| ≤ ε

2 .
Next, let p̃(θ) = pε(θ) where:

pε(θ) = U ε(θ)− v(q(θ), θ) + n2C(|s̃(θ)− θ|) (34)

Note that |pε(θ)− p(θ)| < ε since |U ε(θ)− U(θ)| < ε/2 and n2C(|s̃(θ)− θ|) < ε/2.
Let us establish that both s̃(θ) and pε(θ) are continuous and differentiable. Since U ε(θ)

and v(·, ·) are C2 functions, q(·) is C1, and Θ is compact, the right-hand side of (32) is a
continuous function on Θ bounded from above by some 0 < V̂ < ∞. Then, since C(.) is
C2 function and 0 < ω ≤ C ′′(·) ≤ ω < ∞, it follows that s̃′(θ) exists and is a C0 function
satisfying the following equation obtained by differentiating (32):

n2C
′′(|s̃(θ)− θ|)(s̃′(θ)− 1) =

d2U ε

d2θ
(θ)− ∂2v

∂θ∂q
(q(θ), θ)q′(θ)− ∂2v

∂θ2
(q(θ), θ) < V̂ (35)

Differentiating the right-hand side of (34) and using (32) and (35), we get:

dpε(θ)
dθ

= −∇qv(q(θ), θ)q′(θ) + n2sgn(s̃(θ)− θ)C ′(|s̃(θ)− θ|)s̃′(θ) (36)

Obviously, dpε(θ)
dθ is continuous.

In the rest of the proof we establish that n1 and p can be chosen in such a way that is
optimal for an agent with utility parameter θ to use strategy S̃n1,n2(θ). At first, we will show
that this agent gets a higher payoff by using reporting strategy S̃n1,n2(θ) rather than S̃n1,n2(θ̂)
for some θ̂ 6= θ provided that n1 is sufficiently large. If she uses reporting strategy S̃n1,n(θ̂),
she gets the following payoff:

W ε(θ̂, θ) = v(q(θ̂), θ) + pε(θ̂)− n1C(|θ̂ − θ|)− n2C(|s̃(θ̂)− θ|) (37)

Thus, we need to show that U ε(θ) ≡ W ε(θ, θ) ≥ W ε(θ̂, θ) ∀θ and θ̂ ∈ Θ. Differentiating (37)

and using (36) to substitute for dpε(θ̂)

dθ̂
we get:

∂W ε(θ̂, θ)

∂θ̂
= ∇qv(q(θ̂), θ)q′(θ̂) +

dpε(θ̂)

dθ̂
− n1sgn(θ̂ − θ)C ′(|θ̂ − θ|)

− n2sgn(s̃(θ̂)− θ)C ′(|s̃(θ̂)− θ|)s̃′(θ̂)
=

(
∇qv(q(θ̂), θ)−∇qv(q(θ̂), θ̂)

)
q′(θ̂)− n1sgn(θ̂ − θ)C ′(|θ̂ − θ|)

− n2

(
sgn(s̃(θ̂)− θ)C ′(|s̃(θ̂)− θ|)− sgn(s̃(θ̂)− θ̂)C ′(|s̃(θ̂)− θ̂|)

)
s̃′(θ̂) (38)
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At first, let us establish the bound on the first term in (38). Let F = maxi maxθ∈Θ
∂qi(θ)

∂θ

and mi = max(q,θ)∈Q×Θ
∂2v(q(θ),θ)

∂qi∂θ . Then,

∣∣∣
(
∇qv(q(θ̂), θ)−∇qv(q(θ̂), θ̂)

)
q′(θ̂)

∣∣∣ ≤ F

∣∣∣∣∣
k−1∑

i=1

∫ θ̂

θ

∂2v(q(θ̂), z)
∂qi∂z

dz

∣∣∣∣∣ ≤ F (
k−1∑

i=1

mi)|θ̂ − θ|

To bound the last term in (38), observe from (35) that

|s̃′(θ)| ≤ 1 +
V̂

n2C ′′(s̃(θ)− θ|) ≤ 1 +
V̂

n2ω̄
≡ κn2

Let Ω =
∣∣∣−sgn(s̃(θ̂)− θ)C ′(|s̃(θ̂)− θ|) + sgn(s̃(θ̂)− θ̂)C ′(|s̃(θ̂)− θ̂|)

∣∣∣. Suppose first that

θ̂ < θ. If s̃(θ̂) ≤ θ̂ ≤ θ, then

Ω = C ′(θ − s̃(θ̂))− C ′(θ̂ − s̃(θ̂)) =
∫ θ

θ̂
C ′′(z − s̃(θ̂))dz ≤ ω̄|θ̂ − θ|

If θ̂ < s̃(θ̂) < θ, then

Ω = C ′(θ − s̃(θ̂)) + C ′(s̃(θ̂)− θ̂)) ≤ 2C ′(θ − θ̂) ≤ 2ω̄|θ̂ − θ|

Finally, if θ̂ < θ < s̃(θ̂), then

Ω = C ′(s̃(θ̂)− θ̂)− C ′(s̃(θ̂)− θ) =
∫ θ

θ̂
C ′′(s̃(θ̂)− z)dz ≤ ω̄|θ̂ − θ|

Proceeding in an entirely parallel fashion in the case where θ̂ > θ, we can again show that
Ω ≤ 2ω̄|θ̂− θ|. Thus, the absolute value of the last term in (38) is bounded by 2n2ω̄|θ̂− θ|κn2 .

Consider now the middle term in (38), Ψ ≡ −n1sgn(θ̂ − θ)C ′(|θ̂ − θ|). If θ̂ > θ, then
Ψ = − n1C

′(|θ̂−θ|) ≤ −n1ω(θ̂−θ). On the other hand, if θ̂ < θ then Ψ = n1C
′(θ− θ̂) ≥ n1ω(θ− θ̂).

It follows that if θ̂ > θ, then

∂W ε

∂θ̂
(θ̂, θ) ≤

(
F

k−1∑

i=1

mi + 2n2ω̄κn2 − n1ω

)
(θ̂ − θ)

and that if θ̂ < θ, then

∂W ε

∂θ̂
(θ̂, θ) ≥

(
−F

k−1∑

i=1

mi − 2n2ω̄κn2 + n1ω

)
(θ − θ̂)

By selecting n1 ≥
(
F

∑k−1
i=1 mi + 2n2ω̄κn2

)
/ω, we therefore guarantee that ∂W ε

∂θ̂
(θ̂, θ) ≤ 0 for

all θ̂ > θ and that ∂W ε

∂θ̂
(θ̂, θ) ≥ 0 for all θ̂ < θ, showing that incentive compatibility is satisfied.

Finally, select p sufficiently small so that deviating to an alternative reporting strategy
S 6= S̃n1,n2(θ) ∀θ ∈ Θ is not optimal for any agent. Q.E.D.
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